

Geared Motors and Brake Motors

- Helical gear units / geared motors
- Parallel shaft helical gear units / geared motors
- Helical-bevel gear units / geared motors
- Helical-worm gear units / geared motors
- Spiroplan ${ }^{\circledast}$ geared motors
- Planetary gear units / geared motors
- Heavy duty gear units
- Low-backlash helical bevel and planetary gear units / geared motors
- Brake motors
- Hazardous-duty type AC motors

Electronic Controlled Drives

- MOVITRAC ${ }^{\circ}$ frequency inverters
- MOVIMOT ${ }^{\circledR}$ geared motors
- MOVIDRIVE ${ }^{\oplus}$ and MOVIDRIVE ${ }^{\oplus}$ compact drive inverters
- MOVIDYN ${ }^{\star}$ servo controllers
- Servomotors and geared servomotors
- DC geared motors, DC motors and DC brake motors

Mechanical Variable Speed Drives

- VARIBLOC ${ }^{\circledR}$ wide V-belt variable speed geared motors
- VARIMOT ${ }^{\oplus}$ friction disc variable speed geared motors

Services

- Technical support
- Support software
- Training seminars
- Technical documentation
- Customer service
1 Inverter Data 5
1.1 Conformity and approval 5
1.2 Type designation / Ordering data 6
1.3 Description / Features 9
1.4 Block circuit diagram 11
1.5 Technical data 12
1.5.1 MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ basic unit, $3 \times 200 . . .240 \mathrm{~V}_{\mathrm{AC}}$ 12
1.5.2 MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ basic unit, 3×380... $500 \mathrm{~V}_{\mathrm{AC}}$ 13
1.5.3 MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ for crane control 15
1.5.4 MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ decentralized frequency inverters with IP65 enclosure 16
1.5.5 MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ size 0 with PROFIBUS-DP interface 17
1.5.6 MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ size 0 with InterBus interface 18
1.5.7 MOVITRAC ${ }^{\circledR}$ 31C electronic data 19
1.5.8 FBG 31C keypad 20
1.5.9 USS21A serial interfaces (RS-232 and RS-486) 21
1.5.10 FEA 31C input/output expansion 22
1.5.11 FIO 31C digital input/output expansion. 24
1.5.12 FRN 31C and FEN 31C (speed controllers) 25
1.5.13 FIT 31C "TF-/TH" evaluation 27
1.5.14 FRS 31C synchronous operation control 28
1.5.15 FFP 31C PROFIBUS interface 30
1.5.16 FFI 31C INTERBUS interface 31
1.5.17 FFD 31C DeviceNet fieldbus interface 32
1.5.18 FPI 31C IPOS positioning control 33
1.5.19 BW... braking resistors for MOVITRAC ${ }^{\circledR}$ 31C...-503 34
1.5.20 BW... braking resistors for MOVITRAC® 31C...-233 37
1.5.21 FNP 020-503 supply buffer module 38
1.5.22 NF...-... input filters for MOVITRAC ${ }^{\circledR}$ 31C...-503 40
1.5.23 EF...-503 EMC modules for MOVITRAC ${ }^{\circledR}$ 31C...-503 and -233 40
1.5.24 ND...-013 line chokes MOVITRAC ${ }^{\circledR}$ 31C...-503 41
1.5.25 HD 001 output chokes for MOVITRAC ${ }^{\circledR}$ 31C...-503 and -233 41
1.5.26 HF....... output filters for MOVITRAC ${ }^{\circledR}$ 31C...-503 42
1.5.27 Selection of input filter/line choke/output filter and MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ 43
1.6 Dimension drawings 44
1.6.1 MOVITRAC ${ }^{\circledR}$ 31C basic units (with FBG 31C option) 44
1.6.2 Decentralized frequency inverter MOVITRAC ${ }^{\circledR}$ 31C 46
1.6.3 Dimension size 0 with PROFIBUS-DP 46
1.6.4 BW... braking resistors 47
1.6.5 FNP 020-503 supply buffer module 49
1.6.6 NF...-... input filters 49
1.6.7 EF...-503 EMC modules 50
1.6.8 ND...-013 line chokes 51
1.6.9 HD... output choke. 51
1.6.10 HF...-... output filters 52
1.7 Operating menu and parameter setting 53
1.7.1 Menu structure and user menu 53
1.7.2 Parameter list 55
1.7.3 Parameter descriptions 58
1.7.4 Summary of parameter for different applications 83
1.8 MC_SHELL 2.90 user software 85
1.9 MC_SCOPE process data visualization 1.11 85
2 Project Planning 86
2.1 Project planning flowchart 86
2.2 Motor selection for MOVITRAC® 31C...-503 87
2.2.1 Delta/Star connection ($230 / 400 \mathrm{~V}_{\mathrm{AC}} / 50 \mathrm{~Hz}$) 88
2.2.2 StarStar/Star connection ($230 / 460 \mathrm{~V}_{\mathrm{AC}} / 60 \mathrm{~Hz}$) 89
2.3 Motor selection for MOVITRAC ${ }^{\circledR}$ 31C...-233 90
2.4 Inverter connection 91
2.4.1 Connection of power section and brake 91
2.4.2 Connection of electronic terminals and functional description 92
2.4.3 Power and motor cables 95
2.4.4 UL-compliant installation 99
2.4.5 Electronic leads and signal generation 100
2.4.6 EMC-compliant installation 101
2.4.7 NF...-... input filter connection 103
2.4.8 EF...-503 EMC module connection 103
2.4.9 ND...-013 line choke connection 104
2.4.10 HD... output choke connection 104
2.4.11 Installation notes for HF...-... Output Filter 105
2.4.12 Connecting the decentralized frequency inverter 106
Further notes on project planning are contained in "Drive Engineering - Practical Implementation", volume 5. This publication can be ordered from SEW under the order no. 09222812.

1 Inverter Data

1.1 Conformity and approval

CE-Mark:

MOVITRAC ${ }^{\circledR}$ 31C frequency inverters comply with the requirements of Low Voltage Directive 73/23/EEC. The CE Mark on the nameplate indicates this conformity. On request we will issue a Declaration of Conformity to this effect.

Electromagnetic compatibility (EMC):

MOVITRAC ${ }^{\circledR}$ 31C frequency inverters are components, designed for installation in machinery and plants. They comply with Generic Standards EN 50081 (interference emission) and EN 50082 (immunity to interference) in respect of EMC.

If the instructions for EMC-compliant installation of MOVITRAC ${ }^{\circledR}$ 31C frequency inverters $(\rightarrow$ Sec. 2.4.5) are followed, the corresponding prerequisites for the CE marking of the entire machine or plant on the basis of EMC Directive 89/336/EEC are met.

The following measurements for emission and immunity are available:
For the tests the MOVITRAC ${ }^{\circledR}$ 31C frequency inverter was installed in accordance with the applicable EMC regulations and fitted with an optional NF.. input filter, shielded signal leads and a shielded motor power cable (or, alternatively, with an optional HF... output filter or HD001 output choke). In combination with the EF.. EMC modules the same requirements are met.

Criterion	Type of measurement	Measured value	Permissible limit to EN 50081/EN 50082
RF emission	Power cable \& emission	$\begin{aligned} & \leq \text { class B } \\ & \text { (residential environment) } \end{aligned}$	```\(\leq\) class A (industrial environment) or \(\leq\) class B (residential environment)```
Immunity to electrostatic discharge (ESD) to IEC 801-2	Discharge through air Discharge by contact	$\begin{aligned} & 8 \mathrm{kV} \\ & 4 \mathrm{kV} \end{aligned}$	$\begin{aligned} & 8 \mathrm{kV} \\ & 4 \mathrm{kV} \end{aligned}$
Immunity to radiated RF electromagnetic fields to IEC 801-3	Test field strength	$10 \mathrm{~V} / \mathrm{m}$	$10 \mathrm{~V} / \mathrm{m}$
Immunity to bursts to IEC 801-4	Power cable Motor cable	$\begin{aligned} & 4.5 \mathrm{kV} \\ & 4.5 \mathrm{kV} \end{aligned}$	$\begin{aligned} & 2 \mathrm{kV} \\ & 2 \mathrm{kV} \end{aligned}$
	Supply lead to braking resistor Signal leads	$\begin{aligned} & 4.5 \mathrm{kV} \\ & 45 \mathrm{kV} \end{aligned}$	$\begin{aligned} & 2 \mathrm{kV} \\ & 2 \mathrm{kV} \end{aligned}$
Immunity to conducted RF coupling to IEC 801-6	All leads	10 V	10 V

UL listing

MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ units are UL listed. CUL is equivalent to CSA approval.

1.2 Type designation / Ordering data

Type designation

Example:

MOVITRAC ${ }^{\circledR}$ 31C110-503-4-00

Ordering data for the $3 \times 230 \mathrm{~V}$ version

Ordering data $3 \times 500 \mathrm{~V}$ version, sizes 0 and 1 :

Ordering data $3 \times 500 \mathrm{~V}$ version, sizes 2, 3 and 4:

MOVITRAC ${ }^{\text {® }}$.. ...-503-4-00 basic unit Inverter part number	$\begin{array}{\|l\|l\|} \hline 31 C 040 \\ 8263361 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 31 C 055 \\ 826337 X \end{array}$	$\begin{aligned} & 31 C 075 \\ & 8263388 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 31 C 110 \\ 8263086 \\ \hline \end{array}$	$\begin{aligned} & 31 C 150 \\ & 8263094 \end{aligned}$	$\begin{array}{\|l\|} \hline 31 \mathrm{C} 220 \\ 8263108 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 31 C 300 \\ 8263299 \\ \hline \end{array}$	$\begin{aligned} & 31 C 370 \\ & 8263302 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 31 C 450 \\ 8263310 \\ \hline \end{array}$	Further requirements
Size	2			3			4			
Accessory equipment										
4 quadrant operation	Braking re BW 047-00 BW 147 BW 247 BW 347	sistor (Selec 5	$\text { ection } \rightarrow \text { Sec }$	c. 1.5.19) \|BW 018-015 BW 018-035 BW 018-07 BW 915			$\left\lvert\, \begin{aligned} & \text { BW 012-025 } \\ & \text { BW 012-050 } \\ & \text { BW 012-100 } \end{aligned}\right.$		$2 x$ BW018-015 BW018-035 BW018-075	EMC-com- pliant wiring
Temporary supply in case of short power failure	FNP 020-503 supply buffer module (Selection \rightarrow Sec.1.5.21)									
EMC measures	Input filter NFOO8-443 NFOO8-503 NF016-443 NF016-503	(Selection NF016-443 NF016-503	$\rightarrow \text { Sec. 1.5.? }$	$\begin{aligned} & \text {.22) } \\ & \text { NFO25-443 } \\ & \text { NFO25-503 } \\ & \text { NFO36-443 } \\ & \text { NFO36-503 } \end{aligned}$		$\begin{aligned} & \text { NF050-443 } \\ & \text { NF050-503 } \\ & \text { NF08O-443 } \end{aligned}$		$\begin{array}{\|l\|} \text { NF110-443 } \\ \text { NF110-503 } \end{array}$		
	EMC module (Selection \rightarrow Sec. 1.5.23)									
Additional overvoltage protection	Line choke (Selection \rightarrow Sec. 1.5.24) ND020-013 / ND045-013 / ND085-013 / ND1503									
EMC measures	$\begin{aligned} & \text { Output choke } \\ & \text { HD... (Selection } \rightarrow \text { Sec. 1.5.25) } \end{aligned}$									
EMC measures, noise reduction and motor overvoltage protection for long cable runs	Output HF040-503 HFO55-503 HF075-503 HFO23-403 HF033-403 HF055-503 HF075-503 HF023-403 HF033-403 HF047-403					$\left\|\begin{array}{l} \text { HF047-403 } \\ 2 \times \mathrm{HFO} 53-403 \end{array}\right\|$	2xHF033-403 $2 \times$ HFO47-403			
$\begin{array}{l}\text { Operation/Communication: } \\ \text {-via keypad }\end{array}$ FBG 31C -01 (D/E/F) + FKG 31C										
- via PC (RS-232) - via PC or SPS (RS-485)	USS21A (RS-232 and RS-485 serial interfaces)									PC with MC_SHELL software from version 2.90 upwards
- additional binary and analog inputs/outputs and RS-485	FEA 31C (input/output expansion)									
- additional binary inputs/outputs and RS-485	FIO 31C (digital input/output expansion)									
- PROFIBUS interface	FFP 31C (PROFIBUS fieldbus card)									
- INTERBUS interface	FFI 31C (INTERBUS-S fieldbus card)									
- DeviceNet interface	FFD 31C (DeviceNet fieldbus card)									
Additional functions - Synchronous operation	FRN 31C (speed controller with I/O expansion) comprising FEA 31C and FEN 31C FEN 31C (speed controller without I/O expansion)									Motorencoder
- Synchronous operation	FRS 31C (synchronous operation control) comprising FEN 31C and FES 31C (synchronous operation)									
- IPOS positioning control	FPI 31C (position detection for positioning control)									
-TF-/TH evaluation	FIT 31C (TF-/TH evaluation)									connect TF/TH

1.3 Description / Features

Variable frequency inverters of the MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ series are microprocessor-controlled inverters with sinusoidal pulse-width modulation. They are used for speed control of geared motors and standard motors with power ratings from 0.55 kW to 55 kW (0.75 hp to 75 hp). The units are connected directly to the three-phase AC supply system ($3 \times 200 \ldots 240 \mathrm{~V}_{\mathrm{AC}}$ and $3 \times 380 \ldots 500 \mathrm{~V}_{\mathrm{AC}}$ at 50 or 60 Hz). They provide a variable three-phase output voltage up to the level of the input voltage with a proportionally rising output frequency up to an adjustable base frequency between 50 Hz and 120 Hz (optional 3: $5 \ldots 400 \mathrm{~Hz}$). This feature enables three-phase induction motors to be operated with constant torque up to the base frequency and with constant power above the base frequency.
An automatic continuous reduction of the current limit above the chosen base frequency ensures that the three-phase AC motor is protected against stalling in the constant power range.
All electronic inputs and outputs are electrically isolated from the supply.
The electronic circuits are supplied by a switch-mode power supply, which is independent of the input frequency and operates over a wide input voltage range ($380 \mathrm{~V}_{\mathrm{AC}}-10 \% \ldots 500 \mathrm{~V}_{\mathrm{AC}}+10 \%$). MOVITRAC®31C variable frequency inverters are operated with more or less the same software menus as the tried and tested MOVITRAC ${ }^{\circledR} 3000$ frequency inverters. Individual functions are assigned to the same parameters. Consequently, the same MC_SHELL user interface can be used to program both the MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ and the MOVITRAC ${ }^{\circledR} 3000$ from a PC. It is also possible to set and edit MOVITRAC®31C parameters from the optional FBG 31C keypad. In addition to the comprehensive parameter menu there is also a convenient, easy-to-follow user menu comprising the most important functions.
The units' advanced overload behaviour and their automatic motor sizing feature permit all drive components to be used to their optimum. MOVITRAC ${ }^{\circledR}$ 31C frequency inverters come standard a s 4-quadrant units with an integral brake chopper.
The MOVITRAC ${ }^{\circledR}$ 31C basic unit can be upgraded with various options to suit individual application requirements (except for size 0: MOVITRAC ${ }^{\circledR} 31$ C005/31C007/31C011/31C014, see also "Standard features").

O0510BEN
Fig. 1: Overview of accessory equipment

All sizes	Additionally for $1,2,3 \& 4$	Standard features
\bullet	-	```Integral brake chopper, i.e. capable of 4-quadrant operation 1 integral LED (yellow/green/red) to indicate important operating conditions 6 binary inputs (programmable to 15 control functions) 2 binary outputs (programmable to 23 control functions); one of them with driver capability for contactor actuation 1 analog output (pulse-width-modulated, programmable to 7 control functions) External setpoints: available input modes \(0 \ldots+10 \mathrm{~V} / 0 \ldots \pm 10 \mathrm{~V} / 0 \ldots 20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA}\) S pattern for smooth speed changes Manual mode control with FBG 31C keypad 6 internal fixed setpoints, which can be combined with external setpoints Motorized potentiometer function Ramp generator selection (two available parameter sets provide a total of 4 ramp generators) Parameter set selection (two complete sets) Hoist function parameters Automatic continuous reduction of the current limit in the field-weakening range for motor pull-out protection Ixt monitoring of the drive Thermal motor protection High overload capabilities through dynamic reduction of the set PWM frequency depending on \(\vartheta\) and Ixt Automatic motor size-up for Boost and IxR compensation Programmable signal range monitoring for various frequencies and currents Speed monitoring Monitoring of motoring/regenerating limit values Memory for tracing of \(\mathrm{x} / \mathrm{t}\) diagrams with MC_SCOPE Adjustable PWM switching frequency to suit the application Frequency window skip to avoid speeds which induce mechanical resonances DC injection braking Heating current to prevent motor condensation 4 reset options All parameters can be restored to their factory setting Parameter lock to prevent unauthorized access to parameters Selection of two menu levels: the comprehensive parameter menu and the convenient, easy-to-follow user menu Transfer of customizing parameters between several inverters (PC + MC_SHELL / FBG 31C keypad) Fault memory (5 last-fault events are stored together with relevant operating data) Separate 24 V supply input for diagnosis, parameter editing and saving of data Disconnectable electronic terminals```
$\stackrel{-}{\bullet}$		Available expansion options: 1. FBG 31C (keypad) with 6 keys and plain text display, trilingual 2. USS 11A (RS-232 serial interface) and UST 11A (RS-485 serial interface) 3. FEA 31C (input/output expansion, $4 \times \mathrm{BI}, 2 \times \mathrm{BO}, 2 \mathrm{AI}, 2 \mathrm{AO}, 1 \times \mathrm{RS}-485$) 4. FIO 31C (digital input/output expansion, $7 \times \mathrm{BI}, 6 \times \mathrm{BO}, 1 \times \mathrm{RS}-485$) 5. FFP 31C (PROFIBUS option) 6. FFI 31C (INTERBUS-S option) 7. FFD 31C (DeviceNet fieldbus card) 8. FRN 31C and FEN 31C (speed controller) 9. FRS 31C (synchronous operation control) 10. FPI 31C (IPOS positioning control) 11. FIT 31C (TF-/TH evaluation) 12. BW... braking resistors 13. NF... input filters/EF... EMC modules/HF... output filters/ND... line chokes/ HD... output chokes

1.4 Block circuit diagram

Fig. 2: Block circuit diagram

Specifics of size 0 units (MOVITRAC ${ }^{\circledR}$ 31COO5/007/011/014):

- Terminals 48/49 are integrated into terminal strip X3. Terminal strip X14 does not exist.
- The BW200-003 and BW100-003 braking resistors can also be mounted inside the unit.
- Option slots X20 and X21 are not available.

1.5 Technical data

1.5.1 MOVITRAC ${ }^{\otimes} 31 \mathrm{C}$ basic unit, $3 \times 200 . .240 \mathrm{~V}_{\mathrm{AC}}$

[^0]To provide sufficient cooling leave a minimum clearance of 100 mm (4 in .) above and below each unit!
Power ratings are based on a factory-set PWM frequency of 4 kHz (P325/345).
Where the PWM frequencies are higher, the unit output power can be reduced.
The rated output power is constant over the entire input voltage range.
1.5.2 MOVITRAC ${ }^{\circledast}$ 31C basic unit, $3 \times 380 \ldots 500 \mathrm{~V}_{\mathrm{AC}}$

MOVITRAC ${ }^{\text {® }}$ type	$\begin{array}{\|l\|} \hline 31 C 005- \\ 503-4-00 \end{array}$	$\begin{aligned} & \hline 31 C 007- \\ & 503-4-00 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 31 C 011- \\ 503-4-00 \end{array}$	$\begin{aligned} & 31 C 014- \\ & 503-4-00 \end{aligned}$	$\begin{array}{\|l} 31 C 008- \\ 503-4-00 \end{array}$	$\begin{array}{\|l\|} \hline 31 C 015- \\ 503-4-00 \end{array}$	$\begin{aligned} & \hline 31 C 022- \\ & 503-4-00 \end{aligned}$	$\begin{aligned} & 31 C 030- \\ & 503-4-00 \end{aligned}$
Inverter part no.	8260788	8260796	826080 X	8263744	8263329	8263337	8263345	8263353
Size	0				1			
INPUT								
Rated input voltages $\quad V_{\text {in }}$ Permissible range	$\begin{aligned} & 3 \times 380 \mathrm{~V}_{\mathrm{AC}} / 400 \mathrm{~V}_{\mathrm{AC}} / 415 \mathrm{~V}_{\mathrm{AC}} / 460 \mathrm{~V}_{\mathrm{AC}} / 480 \mathrm{~V}_{\mathrm{AC}} / 500 \mathrm{~V}_{\mathrm{AC}} \\ & \mathrm{~V}_{\mathrm{in}}=380 \mathrm{~V}_{\mathrm{AC}}-10 \% \ldots 500 \mathrm{~V}_{\mathrm{AC}}+10 \% \end{aligned}$							
Input frequency $\quad \mathrm{f}_{\text {in }}$								
Rated input current (at $V_{\text {in }}=3 \times 400 V_{\text {AC }}$)Iin 100% 125%	$\begin{aligned} & 1.6 \mathrm{~A}_{\mathrm{AC}} \\ & 1.9 \mathrm{~A}_{A C} \end{aligned}$	$\begin{aligned} & 1.9 \mathrm{~A}_{\mathrm{AC}} \\ & 2.4 \mathrm{~A}_{\mathrm{AC}} \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~A}_{\mathrm{AC}} \\ & 2.9 \mathrm{~A}_{\mathrm{AC}} \end{aligned}$	$\begin{aligned} & 3.5 \mathrm{~A}_{\mathrm{AC}} \\ & 4.4 \mathrm{~A}_{\mathrm{AC}} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~A}_{\mathrm{AC}} \\ & 2.5 \mathrm{~A}_{\mathrm{AC}} \end{aligned}$	$\begin{aligned} & 3.5 \mathrm{~A}_{\mathrm{AC}} \\ & 4.4 \mathrm{~A}_{\mathrm{AC}} \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~A}_{A C} \\ & 6.3 \mathrm{~A}_{A C} \end{aligned}$	$6.7 \mathrm{~A}_{\text {AC }}$ $8.4 \mathrm{~A}_{A C}$
OUTPUT								
Rated output power (constant at $V_{\text {in }}=380 \ldots . .500 \mathrm{~V}_{\mathrm{AC}}$)	1.4 kVA	1.8 kVA	2.2 kVA	2.8 kVA	1.8 kVA	2.8 kVA	3.8 kVA	5.1 kVA
Rated output current (at $V_{\text {in }}=3 \times 400 V_{\text {AC }}$)	$2.0 \mathrm{~A}_{\text {AC }}$	$2.5 \mathrm{~A}_{\text {AC }}$	$3.2 \mathrm{~A}_{\text {AC }}$	$4.0 \mathrm{~A}_{\text {AC }}$	$2.5 \mathrm{~A}_{\text {AC }}$	$4.0 \mathrm{~A}_{\text {AC }}$	5.5 $\mathrm{A}_{\text {AC }}$	7.3 $\mathrm{A}_{\text {AC }}$
Increased output current $\left(125 \% I_{N}\right) I_{D}$ $\left(\text { at } V_{\text {in }}=3 \times 400 \mathrm{~V}_{\mathrm{AC}}\right)$	$2.5 \mathrm{~A}_{\text {AC }}$	$3.1 \mathrm{~A}_{\text {AC }}$	$4.0 \mathrm{~A}_{\text {AC }}$	$5.0 \mathrm{~A}_{\text {AC }}$	$3.1 \mathrm{~A}_{\text {AC }}$	5.0 $\mathrm{A}_{\text {AC }}$	6.9 $\mathrm{A}_{\text {AC }}$	$9.1 \mathrm{~A}_{\text {AC }}$
Constant load Recommended motor power $\mathrm{P}_{\text {Mot }}$	$\begin{aligned} & 0.55 \mathrm{~kW} \\ & (0.75 \mathrm{hp}) \end{aligned}$	$\begin{aligned} & 0.75 \mathrm{~kW} \\ & (1.0 \mathrm{hp}) \end{aligned}$	$\begin{aligned} & \hline 1.1 \mathrm{~kW} \\ & (1.5 \mathrm{hp}) \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~kW} \\ & (2.0 \mathrm{hp}) \end{aligned}$	$\begin{aligned} & 0.75 \mathrm{~kW} \\ & (1.0 \mathrm{hp}) \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~kW} \\ & (2.0 \mathrm{hp}) \end{aligned}$	$\begin{aligned} & 2.2 \mathrm{~kW} \\ & (3.0 \mathrm{hp}) \end{aligned}$	$\begin{aligned} & 3.0 \mathrm{~kW} \\ & (4.0 \mathrm{hp}) \end{aligned}$
Variable torque load and constant load without overload Recommended motor power $\mathrm{P}_{\text {Mot }}$	$\begin{aligned} & 0.75 \mathrm{~kW} \\ & (1.0 \mathrm{hp}) \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~kW} \\ & \text { (1.5 hp) } \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~kW} \\ & (2.0 \mathrm{hp}) \end{aligned}$	$\begin{aligned} & 2.2 \mathrm{~kW} \\ & (3.0 \mathrm{hp}) \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~kW} \\ & (1.5 \mathrm{hp}) \\ & \hline \end{aligned}$	$\begin{aligned} & 2.2 \mathrm{~kW} \\ & (3.0 \mathrm{hp}) \end{aligned}$	$\begin{aligned} & 3.0 \mathrm{~kW} \\ & (4.0 \mathrm{hp}) \end{aligned}$	$\begin{aligned} & 4.0 \mathrm{~kW} \\ & (5.0 \mathrm{hp}) \end{aligned}$
Current limit with brake chopper $\mathrm{I}_{\text {max }}$	motoring: $150 \% I_{N}$ regenerating: $150 \% I_{N}$$\quad$ duration depending on utilization (P 021)							
Internal current limit	$I_{\text {max }}=20 . .150$ \% set via menu							
Minimum braking resistor $\quad \mathrm{R}_{\mathrm{BW}}$ rating for 4 Q operation	$200 \Omega-10$ resistor ind	\% ductance:	$L_{B W}<10 \mu$		47 Ω-10\%			
Output voltage $\mathrm{V}_{\text {outp }}$	adjustable with parameter P329 / P349, however max. $\mathrm{V}_{\text {in }}$							
Output frequency $\mathrm{f}_{\text {outp }}$ Resolution $\Delta \mathrm{f}_{\text {outp }}$ Base frequency $\mathrm{f}_{\text {base }}$	$0 . .400 \mathrm{~Hz}$ 0.05 Hz ov in steps: 50	${ }_{\text {ver the enti }} \mathrm{f}_{\text {min }}$	$=0 . .40 \mathrm{~Hz}$ re range $4 / 120 \mathrm{~Hz}$	$\mathrm{f}_{\text {max }}$ and	$=5 . . .400 \mathrm{~Hz}$ continuously:	ly $5 . . .400 \mathrm{~Hz}$		
PWM frequency	adjustable: 4/8/12/16 kHz(P325/P345)							
GENERAL								
Immunity	complies with EN 50082 - Parts $1+2$							
Interference emission with EMC compliant wiring (\rightarrow Sec. 2.4.5)	to class B limit as per EN 55011 and EN 55014 complies with EN 50081 - Parts $1+2$							
Ambient temperature *) $\vartheta_{\text {amb }}$	$0^{\circ} \ldots+45^{\circ} \mathrm{C}\left(\mathrm{P}_{\mathrm{N}}\right.$ derating: $3.0 \% \mathrm{I}_{\mathrm{N}}$ per K up to max. $\left.60^{\circ} \mathrm{C}\right)($ EN 50178 , class 3 K 3$)$							
Storage temperature $\vartheta_{\text {storage }}$	$-25^{\circ} \ldots+70^{\circ} \mathrm{C}$ (EN 50178, class 3K3) FBG 31 keypad: $-20^{\circ} \ldots+60^{\circ} \mathrm{C}$							
Enclosure	IP 20 (EN 60529/NEMA1)							
Duty type	DB (EN 60149-1-1 und 1-3)							
Power losses at $\mathrm{P}_{\mathrm{N}} \quad \mathrm{P}_{\text {loss max }}$	46 W	54 W	68 W	75 W	65 W	85 W	105 W	130 W
Cooling type (DIN 41 751) natural cooling blower cooling/required air flow	- \quad - \quad $20 \mathrm{~m}^{3} / \mathrm{h}\left(12 \mathrm{ft}^{3} / \mathrm{min}\right)$				- - -			
Altitude of installation	$\mathrm{h} \leq 1000 \mathrm{~m}(3300 \mathrm{ft})$$\mathrm{I}_{\mathrm{N}}$ derating: 1% per $100 \mathrm{~m}(330 \mathrm{ft})$ from $1000 \mathrm{~m}(3300 \mathrm{ft})$ to $2.000 \mathrm{~m}(6600 \mathrm{ft})$							
Weight	$2.5 \mathrm{~kg}(5.5 \mathrm{lb})$				$4.5 \mathrm{~kg}(9.9 \mathrm{lb})$			
Main dimensions W \quad xHxD	$184 \times 281 \times 170 \mathrm{~mm}$ ($4.1 \times 7.4 \times 7.4 \mathrm{in}$)				$184 \times 281 \times 170 \mathrm{~mm}$ ($7.2 \times 11.1 \times 6.7 \mathrm{in})$			

*) Units for $\vartheta_{\text {amb }}<0^{\circ} \mathrm{C}$ on request
To provide sufficient cooling leave a minimum clearance of 100 mm (4 in .) above and below each unit.
Power ratings are based on a factory-set PWM frequency of 4 kHz ($\mathrm{P} 325 / 345$). Where the PWM are higher, the unit output power can be reduced.
The rated output power is constant over the entire input voltage range.
If $\mathrm{V}_{\text {in }}=3 \times 500 \mathrm{~V}_{\mathrm{Ac}}$, the permissible mains and output currents are to be reduced by 20% compared to the specified rated data.

MOVITRAC ${ }^{(\pi)}$ type

*) Units for $\vartheta_{\text {amb }}<0^{\circ} \mathrm{C}$ on request
To provide sufficient cooling leave a minimum clearance of 100 mm (4 in .) above and below each unit!
Power ratings are based on a factory-set PWM frequency of $4 \mathrm{kHz}(\mathrm{P} 325 / 345)$. Where the PWM frequencies are higher, the unit output power can be reduced.
The rated output power is constant over the entire input voltage range.
If $\mathrm{V}_{\text {in }}=3 \times 500 \mathrm{~V}_{\mathrm{AC}}$ the permissible mains and output currents are to be reduced by 20% compared to the specified rated data.

1.5.3 MOVITRAC ${ }^{\circledR}$ 31C for crane control

The MOVITRAC ${ }^{\circledR}$ frequency inverters for crane control are especially equipped for applications such as "trolley for bridge cranes and hoists". Two operating modes are available:

1. Motorized potentiometer mode (ground control)
2. Fixed setpoint mode (radio control)

A comprehensive limit switch control monitors the preliminary and ultimate limit switches along the distance of travel of the bridge or trolley. The power ratings of the MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$...-503-4-01 special version for crane control are the same as those of the standard version.

Part numbers of the special version for the crane control:

MOVITRAC $^{\circledR}$ type	Part number
$31 C 008-503-4-01$	8263396
$31 C 015-503-4-01$	826340 X
$31 C 022-503-4-01$	8263418
$31 C 030-503-4-01$	8263426
$31 C 040-503-4-01$	8263434
$31 C 055-503-4-01$	8263442
$31 C 075-503-4-01$	8263450

MOVITRAC $^{\circledR}$ type	Part number
31C110-503-4-01	826399 X
$31 C 150-503-4-01$	8264007
$31 C 220-503-4-01$	8264015
$31 C 300-503-4-01$	8264023
$31 C 370-503-4-01$	8264031
$31 C 450-503-4-01$	826404 X

The special versions for crane control are fitted with the FEA 31C input/output expansion pcb. This option pcb carries the system EPROMs for crane control.

The system software for the crane control option has the part number 8222460.

Functions like hoist and speed control etc. continue to be available without any restrictions.

- The following standard functions are not available with this unit:
- manual operation (P87_)
- master-slave operation (P88_)
- setpoint n1 term. 32/33 with standard function
- setpoint n2 term. 34/35
- external current limitation term. 36/37
- programming the binary inputs on term. 42-51 (P60_)
- all functions which are activated via the binary inputs Exception: fixed setpoints
- reset via the binary input

For further information, please refer to the "Special Version for Crane Control" manual, order no. 09229868.

1.5.4 MOVITRAC ${ }^{\circledR}$ 31C decentralized frequency inverters with IP65 enclosure

MOVITRAC ${ }^{\circledR}$ 31C decentralized inverters are MOVITRAC ${ }^{\circledR}$ 31C units with an integrated input filter installed in a housing with enclosure IP65. MOVITRAC ${ }^{\circledR}$ 31C frequency inverters can, therefore, be installed outside the switch cabinet, directly beside the motor. The use of a shielded motor lead or an HD output choke ensures compliance with the requirements of class limit B in accordance with EN 55011.

01379AXX
Fig. 3: MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ decentralized frequency inverter

MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ frequency inverters	31C008-503-4-10	31C015-503-4-10	31CO22-503-4-10	31C030-503-4-10
Inverter part number	8264589	8264597	8264600	8264619
Rated supply voltage $\quad \mathbf{V}_{\text {mains }}$	$3 \times 380 \mathrm{~V}_{\text {AC }}-10 \% \ldots 3 \times 500 \mathrm{~V}_{\text {AC }}+10 \%$			
Mains frequency	50 Hz ... $60 \mathrm{~Hz} \pm 5 \%$			
Rated input current (at $V_{\text {in }}=3 \times 400 V_{A C}$) $I_{\text {mains }} 100 \%$ 125%	$\begin{aligned} & 2.0 \mathrm{~A}_{\mathrm{AC}} \\ & 2.5 \mathrm{~A}_{\mathrm{AC}} \end{aligned}$	$\begin{aligned} & 3.5 \mathrm{~A}_{\mathrm{AC}} \\ & 4.4 \mathrm{~A}_{\mathrm{AC}} \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~A}_{\mathrm{AC}} \\ & 6.3 \mathrm{~A}_{\mathrm{AC}} \end{aligned}$	$\begin{aligned} & 6.7 \mathrm{~A}_{\mathrm{AC}} \\ & 8.4 \mathrm{~A}_{\mathrm{AC}} \end{aligned}$
Output rated power (const. at $\mathrm{V}_{\text {mains }}=380 \ldots 500 \mathrm{~V}_{\mathrm{AC}}$) P_{N}	1.8 kVA	2.8 kVA	3.8 kVA	5.1 kVA
Output current (const. $\mathrm{V}_{\text {mains }}=3 \times 400 \mathrm{~V}_{\mathrm{AC}}$)	$2.5 \mathrm{~A}_{\text {AC }}$	$4.0 \mathrm{~A}_{\text {AC }}$	$5.5 \mathrm{~A}_{\text {AC }}$	$7.3 \mathrm{~A}_{\text {AC }}$
$\begin{aligned} & \text { Continuous output current }\left(125 \% I_{N}\right) \\ & \text { (at } \left.V_{\text {mains }}=3 \times 400 V_{A C}\right) \end{aligned}$	$3.1 \mathrm{~A}_{\text {AC }}$	$5.0 \mathrm{~A}_{\text {AC }}$	$6.9 \mathrm{~A}_{\text {AC }}$	$9.1 \mathrm{~A}_{\text {AC }}$
Continuous load recommended motor power $\quad P_{\text {мот }}$	0.75 kW (1.0 HP)	1.5 kW (2.0 HP)	2.2 kW (3.0 HP)	3.0 kW (4.0 HP)
Variable torque load and const. Ioad without overcurrent reserve recommended motor power $\quad \mathbf{P}_{\text {MOT }}$	1.1 kW (1.5 HP)	2.2 kW (3.0 HP)	3.0 kW (4.0 HP)	4.0 kW (5.0 HP)
Immunity	complies with EN 50082 - Part 1 and 2			
Emitted interference with EMC compliant wiring or HD output choke	to level B as per EN 55011 and 55014			
Ambient temperature $\vartheta_{\text {amb }}$	$0^{\circ} \mathrm{C} . . .40^{\circ} \mathrm{C}$ (EN 50178)			
Enclosure	IP 65 (EN 60259) (NEMA 12)			
Connections	cables can be inserted via a detachable PG flange detachable screw-type terminals on the terminal board			
Cooling type	auto-cooling			
Weight	$12.5 \mathrm{~kg}(27.56 \mathrm{lb})$			
Overall dimensions W x H x D	$260 \times 455 \times 222 \mathrm{~mm}$ ($10.24 \times 17.91 \times 8.74 \mathrm{in}$)			
Housing	Cover: stainless steel		Lower part: Aluminium (AIMgSi 05)	

1.5.5 MOVITRAC ${ }^{\circledR}$ 31C size 0 with PROFIBUS-DP interface

The frequency inverters have an integrated PROFIBUS-DP interface for slave operation in accordance with EN50170 V2/DIN E 19245 Part 3. The maximum baud rate is 1.5 MBaud, the ident number is $3111_{\text {hex }}=12561_{\text {dec }}$ (GSD file SEW_3111.GSD).

The PROFIBUS-DP interface is, therefore, available for the complete range of MOVITRAC® 31C frequency inverters. MOVITRAC® ${ }^{\circledR}$ 31C size 0 can also be connected to decentralized automation systems via the PROFIBUS network.

1 LED green: RUN
2 LED red: BUS FAULT
3 DIP switches for setting the station address
4 DIP switches for connecting/disconnecting the bus terminating resistor 5 9-pin type connector for bus connection

Inverter dimensions

W x H x D: $128 \times 188 \times 189 \mathrm{~mm}$
($5.04 \times 7.40 \times 7.44 \mathrm{in}$)
00924AXX
Fig. 4: Inverter with PROFIBUS-DP interface and FBG 31 option
The performance data remain the same as for the standard version.
Part numbers MOVITRAC ${ }^{\circledR}$ 31C size 0 with Profibus-DP:

$\mathrm{V}_{\text {supply }}=3 \times 200 \ldots 240 \mathrm{~V}_{\text {AC }}$	
MOVITRAC $^{\circledR}$-type	Part number
$31 C 005-233-4-20$	826449 X
$31 C 011-233-4-20$	8264503

$V_{\text {supply }}=3 \times 380 \ldots 500$ V $_{\text {AC }}$	
MOVITRAC $^{\circledR}$ type	Part number
$31 C 005-503-4-20$	8264457
31 C007-503-4-20	8264465
31 C011-503-4-20	8264473
31C014-503-4-20	8264481

For further information, please refer to the PROFIBUS Fieldbus Interface Manual
(order no. 0922 6818).

1.5.6 MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ size 0 with INTERBus interface

The frequency inverters have an integrated InterBus interface implemented as a two-wire remote bus interface with a 9 -pin sub D connector for the remote bus input and a 9 -pin sub D socket for the remote bus output.

The ident number is $\mathbf{2 2 7}_{\text {dez }}=\mathbf{E} 3_{\text {hex }}$
The InterBus interface is, therefore, available for the complete range of MOVITRAC ${ }^{\circledR}$ 31C frequency inverters. MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ size 0 can also be connected to decentralized automation systems via the InterBus network.

00924AXX
1 DIP switch for setting the process data length
2 Five LEDs for InterBus system diagnositcs
$3 \quad 9$-pin sub D connector (remote bus input)
$4 \quad 9$-pin sub D connector (remote bus output)

Fig. 5: Inverter with InterBus interface and FBG 31 option
Inverter dimensions
W x H x D: $128 \times 188 \times 189 \mathrm{~mm}(5.04 \times 7.40 \times 7.44 \mathrm{in})$
The performance data remain the same as for the standard version.

Part numbers MOVITRAC ${ }^{\circledR}$ 31C size 0 with InterBus:

$V_{\text {supply }}=3 \times 200 \ldots 240$ V $_{\text {AC }}$	
MOVITRAC $^{\circledR}$ type	Part number
31 C005-233-4-21	8266360
31 C011-233-4-21	8266379

$V_{\text {supply }}=3 \times 380 \ldots 500$ V $_{\text {AC }}$	
MOVITRAC $^{\circledR}$ type	Part number
31 C005-503-4-21	8266387
31 C007-503-4-21	8266395
31 C011-503-4-21	8266409
31 C014-503-4-21	8266417

For further information, please refer to the InterBus Fieldbus Interface Manual (order no. 0922 6915).

1.5.7 MOVITRAC ${ }^{\circledR}$ 31C electronic data

MOVITRAC ${ }^{\text {® }}$ series 31C		General electronic data
Speed setpoints	TL. 31	$\begin{aligned} & \text { Reference voltage for potentiometer: }+10 \mathrm{~V}_{\mathrm{DC}}+5 \% /-0 \% \quad \mathrm{I}_{\max }=3 \mathrm{~mA} \\ & \text { Drift: } \quad \begin{array}{l} \text { for setpoint voltage } 10 \mathrm{~V}: \leq \pm 0.1 \% \text { at } \Delta \mathrm{T}=10 \mathrm{~K} \\ \text { of setpoint input: } \leq \pm 40 \mathrm{mV} \text { over the entire temperature range } \end{array} \\ & \hline \end{aligned}$
External setpoints	TL.34/35	$\mathrm{n} 2=0 \ldots+10 \mathrm{~V} / 0 \ldots \pm 10 \mathrm{~V} \Delta \mathrm{n}: 9$ bits $\xlongequal{ } 20 \mathrm{mV}$ Sample time 5 ms with external supply: $\mathrm{R}_{\mathrm{i}}=40 \mathrm{k} \Omega$ if a potentiometer with internal supply is connected TL.31/34/0: $R_{i}=20$ $\mathrm{n} 2=0 \ldots 20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA} \Delta \mathrm{n}: 8 \text { bits } \triangleq 0.08 \mathrm{~mA} \mathrm{R}_{\mathrm{i}}=250 \Omega$ Drift for 10 V and $\Delta T=10 \mathrm{~K}: \leq \pm 1 \%$
Internal setpoints		$n 11 / n 12 / n 13=0 . . .400 \mathrm{~Hz}$ Fixed setpoint selection or parameter set selection : n21/n22/n23 $=0 . . .400 \mathrm{~Hz}$
Frequency ramp generator time ranges		$\left.\begin{array}{ll}\mathrm{t} 11 / \mathrm{t} 21 & \text { up: } \quad 0.0 . . .2000 \mathrm{~s} \\ \mathrm{t} 11 / \mathrm{t} 21 & \text { down: } 0.0 \ldots . .2000 \mathrm{~s} \\ \text { via time selector: } \mathrm{t} 12 / \mathrm{t} 22 \mathrm{up}=\text { down: } 0.0 \ldots . .2000 \mathrm{~s}\end{array}\right\}$ valid for $\Delta \mathrm{f}_{\text {outp }}=50 \mathrm{~Hz}$
External electronics supplyTL. 40		$V=+24 V_{D C} \pm 25 \%$ Basic unit: $I_{\text {inp }}$ approx. 200 mA / with options: $I_{\text {inp }}$ max. 600 mA FBG 31C: $40 \mathrm{~mA} /$ USS 21A: $15 \mathrm{~mA} /$ FEA 31C / FIO 31C: $35 \mathrm{~mA} /$ FEN 31C / FPI 31C: 35 mA
Auxiliary voltage output	TL. 44	$\mathrm{V}=+24 \mathrm{~V}_{\text {DC }} \quad$ current rating: $\mathrm{I}_{\text {max }}=250 \mathrm{~mA}$
Binary inputs		Isolated by optocouplers $R_{i} \approx 3.0 \mathrm{k} \Omega$ (EN 61131-2) Sample time $\leq 5 \mathrm{~ms}$ PLC compatible
Input mode		$\begin{array}{ll} (+13 \ldots+30) V \triangleq " 1 " & =\text { contact closed according to EN61131-2 } \\ (-3 \ldots+5) V \triangleq " 0 " & =\text { contact open } \end{array}$
Control functions	TL. 41 TL.42/43/ 47/48/49	Clockwise / stop Functions assignable by menu (P600...): - clockwise / stop - setpoint active - deceleration monitoring - counterclockwise/stop - parameter set $\begin{array}{lll}\text { - enable / rapid stop } & \text { selection } & \text { - exable/control fault } \\ \text { - ramp gen. selection } & \text { - reset } & \text { - slave free ru }\end{array}$ - ramp gen. selection - reset - n11 (n13) - motorized pot. up - no function - n12 (n13) - motorized pot. down - fixed set point selection - n21 (n23) - hold control - n22 (n23)
Binary outputs Output mode		```PLC compatible response time \(\leq 5 \mathrm{~ms}\) \(" 0 "=0 \mathrm{~V} " 1 "=24 \mathrm{~V}\) \(I_{\max }=150 \mathrm{~mA}\) (TL.61) or 50 mA (TL.62) / short-circuit-proof Relay driver for external relays (internal free-wheeling diode) Note in the case of external power supply via TL. 40 (\(\mathrm{V}=18 . . .30 \mathrm{~V}\)): the same voltage is present on TL.61/62 as on TL. 40 (minimum 24 V when input-supplied) Important: Do not apply separate source voltage!```
Control functions	$\begin{aligned} & \text { TL. } 61 \\ & \text { TL. } 62 \end{aligned}$	
Measurement output Output mode Control functions	TL. 65	
Reference terminals	TL. 0	Reference potential for analog signals and TL. 31 (0V10)
	TL. 30	Reference potential for binary signals (0V24)
	X3: TL. 60	Reference potential for TL. 41/42/43/47 (for size 0 additionally TL. 48/49)
	X14:TL. 60	Reference potential for TL. 48/49 (X14 not available on size 0)

1.5.8 FBG 31C keypad

The keypad is usually used only for commissioning and servicing.
For this reason the MOVITRAC ${ }^{\circledR}$ 31C basic unit comes without a keypad and can then be expanded with the FBG 31C keypad option if required.

Keypad	Languages		Part number
FBG 31C-08	DE/EN/FR/ES/PT	(German/English/French/Spanish/Portuguese)	822997 X
FBG 31C-09	EN/T/SV/DA/FI	(English/Italian/Swedish/Danish/Finnish)	8229988

Features:

- Illuminated plain text display, five languages selectable
- Membrane keypad with 6 keys
- Comes with two menu levels (selectable): the easy-to-follow user menu and the comprehensive parameter menu
- Plugs on to the inverter
- FKG 31C extension cable for keypad connection also available (part no. 822303 3)
- Enclosure IP40 per EN60529 (NEMA 1)

Note:

- Simultaneous use of the FBG 31C keypad and the USS 11A "RS-232 serial interface" or the UST 11A "RS-485 serial interface" options is not possible, as both options are plugged into the X4 terminal on the inverter.
- MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ can also be operated with the FBG 31 predecessor version, in this case, however, the new parameters, e.g. motor protection P54.., cannot be addressed.

Functions:

- Displays operational values
- Displays further measured values: V_{DC} link $/ \mathrm{V}_{\text {motor }} / \mathrm{Ixt} /$ temperature
- Indicates the status of all binary inputs and outputs
- Fault memory readout
- Readout and editing of operating and service parameters
- Saving data
- Transfer of customizing parameters to other MOVITRAC® 31C units all dimensions in mm (in):

FBG 31C Keypad

FKG 31C Cable ${ }^{2}$

1) Mounting plate opening for connector
${ }^{2}$ Communication cable FBG 31C - MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$

Fig. 6: Dimensions of the FBG 31C keypad and the FKG 31C interface cable

1.5.9 USS21A serial interfaces (RS-232 and RS-486)

(Part number: 822589 3)
MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ can be fitted with an electrically isolated RS-232 and an RS-485 serial interface. The RS-232 interface is implemented as a 9-pin sub D connector (EIA standard) and the RS-485 as a terminal connection and they come in a housing to mount to the inverter housing. The interface can be plugged into the dedicated X 4 slot. The transmission rate for both interfaces is 9,600 baud. Startup, operation and service can be carried out via the serial interfaces, from a PC, using the SEW software MC_SHELL, version 2.80 or higher. Customizing parameters may also be transmitted to several MOVITRAC ${ }^{\circledR}$ 31C inverters at a time with the use of a PC.

RS-232 serial interface

To connect a PC to a MOVITRAC ${ }^{\circledR}$ 31C unit that is fitted with the USS 21A option a standard serial interface cable (shielded) with a 9 -pin sub D connector is required.

Fig. 7: Connecting the MOVITRAC ${ }^{\circledR} 31 C-P C$ via the RS-232

RS-485 serial interface

The RS-485 serial interface allows up to 32 MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ inverters to be networked for communication purposes (max. cable length 200 m or 660 ft). The terminating resistors are integrated. Do not connect external terminating resistors!

For multipoint connections, the $0 . . .63$ inverter addresses are permissible. The communications address in MC_SHELL and the RS-485 address of the MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ must correspond correctly to each other.

Terminal assignment		
+	\Rightarrow	+ RS-485
-	\Rightarrow	- RS-485
OV5	\Rightarrow	reference potential

Fig. 8: Dimensions of the USS21A in mm (in)
01003AXX

1.5.10 FEA 31C input/output expansion

(Part number 822297 5)
Note: The FEA 31C input/output expansion cannot be used on size 0 MOVITRAC ${ }^{\circledR}$ 31C 005/007/011/ 014 units.

The FEA 31C option offers additional inputs/outputs to expand the input/output functions of the MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ basic unit. The control functions that can be routed to the binary inputs/outputs remain the same (please refer to Technical Data). The FEA 31C option expands basic unit functions by:

- 4 freely programmable binary inputs
- Terminals TL. $48 / 49$ are available both in the basic unit and on the FEA 31C option.
- Terminals with the same designation are logically ORed. Exception: in combination with the FEN 31C/FPI 31C option, terminals TL. 48/49 are not available in the basic unit.
- 2 analog outputs with measurement functions
- 2 freely programmable binary outputs
- 1 analog input for external current limit
- 1 analog input for additional external setpoint input with variable setpoint voltage scaling over the entire frequency range.
- RS-485 serial interface

Technical data

Fig. 9: Wiring diagram for the FEA 31 C

	$\|$FEA 31C option (Input/output expansion)
X7:	
32/33	Setpoint input n1 Input mode $0 . . .10 \mathrm{~V}$ (Scaling see P10_) Differential input referenced to TL. 33
36/37	External current limit (factory setting: OFF = no function; refer to P640) Differential input referenced to TL. 37 Input mode $0 . . .10 \mathrm{~V} \xlongequal{\wedge} 0 . . .100 \% I_{\max }$ (see P320 and P640)
38	Analog output $0 . . . \pm 10 \mathrm{~V}$; max. 3 mA (Output mode see P63_)
39	Analog output $0 . . . \pm 10 \mathrm{~V}$; max. 3 mA (Output mode see P63_)
0	Reference potential 10 V (TL. 31)
X8:	
$\begin{aligned} & 48 \\ & 49 \\ & 50 \\ & 51 \end{aligned}$	$\begin{aligned} & \text { Binary inputs } \\ & \text { Isolated by optocouplers } \\ & \mathrm{R}_{\mathrm{i}}=3.0 \mathrm{k} \Omega \text { (EN } 61131-2 \text {) } \\ & +13 .+30 \mathrm{~V} \wedge " 1 "=\text { contact closed } \\ & -3 .+5 \quad \mathrm{~V} \text { এ " } 0 \text { " }=\text { contact open } \\ & \text { (freely programmable; control functions see } \\ & \mathrm{P} 60 _ \text {) } \\ & \hline \end{aligned}$
60	Reference potential for TL. 48/49/50/51, i. e. isolated
30	Reference potential OV 24 (TL. 44)
$\begin{aligned} & \hline 63 \\ & 64 \end{aligned}$	Binary outputs Current rating for each output: $I_{\text {max }}=50 \mathrm{~mA}$ Relay driver for external relays (freely programmable; control functions see P61_) Important: Do not apply separate source voltage!
$\begin{aligned} & \hline 67 \\ & 68 \end{aligned}$	RS-485+ RS-485- serial interface RS-485 onboard terminating resistor Max. cable length: $200 \mathrm{~m}(660 \mathrm{ft})$

1.5.11 FIO 31C digital input/output expansion

(Part number 822419 6)
Note: The FIO 31C digital input/output expansion cannot be used on MOVITRAC ${ }^{\circledR} 31 \mathrm{C} 005 / 007 / 011 / 014$ units.
The FIO 31C option offers additional inputs/outputs to expand the input/output functions of the MOVITRAC®31C basic unit. The control functions that can be routed to the binary inputs/outputs remain the same (please refer to Technical Data). The FIO 31C option expands basic unit functions by:

- 7 freely programmable binary inputs

Terminals TL. 48/49 are available both in the basic unit and on the FIO 31C option. Terminals with the same designation are logically ORed. Exception: in combination with the FEN 31C/ FPI 31C option, terminals TL. $48 / 49$ are not available in the basic unit.

- 6 freely programmable binary outputs
- RS-485 serial interface

Technical data

1.5.12 FRN 31C and FEN 31C (speed controllers)

(Part number FRN 31C: 822298 3; FEN 31C: 822321 1)
Note: The FRN 31C and FEN 31C speed controllers cannot be used on MOVITRAC ${ }^{\circledR} 31 \mathrm{C} 005 / 007 / 011 / 014$ units.
Requirements for speed control are:

- activated "Speed control" function (P770)
- motor fitted with an incremental encoder (pulses per revolution: 128/256/512/1024/2048, TTL technology)
The speed control option provides the drive with the following enhanced features compared to V/f control:
- Larger speed control range
- for $n_{\text {max }}=1460 \mathrm{rpm}$
$R \approx 100: 1$ with a 1024 ppr encoder
$R \approx 200: 1$ with a 2048 ppr encoder
$R \approx 2000: 1$ with a fixed setpoint 0.05 Hz and reduced requirements on rotational accuracy
- for $\mathrm{n}_{\max }>1460 \mathrm{rpm}$ an accordingly larger control range
- Higher static control precision
up to $\Delta \mathrm{n} \leq 0.3 \%$ related to n_{N} and load torque changes $\Delta \mathrm{M}=80 \% \mathrm{M}_{\mathrm{N}}$
- Hold control

The hold control is activated by a binary input command (terminal assignment P60_). The drive then decelerates down to the start/stop frequency, using the main ramp, and the reached position is then held electronically. The P gain of the hold control is adjustable.

- Faster dynamic response
i. e. response to load changes. Typical values: $\Delta \mathrm{t} \approx 0.3-0.6 \mathrm{~s}$ if $\Delta \mathrm{M} \approx 80 \% \mathrm{M}_{\mathrm{N}}$ and dependent on the drive's moment of inertia.
- Large peak torques

If the inverter is adequately sized and slip and I x R (P322) are adjusted with sufficiently high values (i.e. $2 \times \mathrm{S}_{\mathrm{N}}$; P323) the motor can produce operational torques in the lower frequency range which can exceed the motor's standard across the line break-down torque.
$\begin{array}{lll}\text { Example: DT } 90 \text { L4 motor } & P_{N}=1.5 \mathrm{~kW} & I_{N}=3.5 \mathrm{~A} \\ & \mathrm{M}_{\mathrm{N}}=10.1 \mathrm{Nm} / 89.42 \mathrm{lb} \text {-in } & \mathrm{M}_{\text {pull-out }}=2.7 \cdot \mathrm{M}_{\mathrm{N}} \text { (on AC supply) }\end{array}$
Connected to the MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ with speed control option the following values were achieved: for $\mathrm{I}=9.5 \mathrm{~A} \triangleq 2.7 \cdot \mathrm{I}_{\mathrm{N}} \rightarrow \mathrm{M}_{\text {max }}=37 \mathrm{Nm}=327 \mathrm{lb}-\mathrm{in} \triangleq 3.7 \mathrm{M}_{\mathrm{N}}$
The achievable torque levels for an asynchronous motor are thereby considerably increased, depending on the current.
The FEN 31C "speed detection" option offers

- 3 input channels for encoder connection to sense the speed:
- Channels \bar{A} and $A ; B$ and $\bar{B}=$ two channels to sense the speed and the direction of rotation
- Channels C and \bar{C} as " 1 " marker signal for complete revolutions (not used for speed control)
- 3 output tracks A and $\bar{A} ; B$ and $\bar{B} ; C$ and \bar{C} for external controls.

Note:

The possible maximum frequency for the speed control is $f_{\max }=120 \mathrm{~Hz}$.

FRN 31C speed controller with input/output expansion:

The FRN 31C option consists of:

- the FEN 31C option
- and the FEA 31C option

FEN 31C speed control without input/output expansion:

- the FEN 31C speed controller comprises only the FEN 31C option

The FEN 31C option has the same speed control functionality as the FRN 31C, however, in the case of the FEN 31C only 4 binary inputs (TL. 41/42/43/47) remain available in the basic unit.

Fig. 11: Wiring diagram for the FEN 31C and FPI 31C options
00514AEN

Type of option Part number		$\begin{aligned} & \text { FEN 31C } \\ & 8223211 \end{aligned}$	$\begin{aligned} & \hline \text { FPI 31C } \\ & 8223041 \end{aligned}$
Encoder supply	$\begin{aligned} & \hline \text { TL.94+/97 } \\ & \text { (Reference) } \end{aligned}$	$+5 \mathrm{~V}\left(\right.$ up to $\left.\mathrm{V}_{\text {max }} \approx 8 \mathrm{~V}\right) / \mathrm{I}_{\text {max }}=300 \mathrm{~mA}$	
Sensor lead	$\begin{aligned} & \text { TL. } 95+/ 96 \\ & \text { (Reference) } \end{aligned}$	for voltage measurement and adjustment to 5 V at the encoder input	
Pulse inputs $A / \bar{A}, B / \bar{B}, C / \bar{C}$	TL.88-93	+ 5 V , TTL level (RS-422)	
Pulse outputs $\mathrm{A} / \overline{\mathrm{A}}, \mathrm{B} / \overline{\mathrm{B}}, \mathrm{C} / \overline{\mathrm{C}}$	TL.81-86	+ 5 V ,TTL level (RS-422)	
Encoder pulses per channel and revolution		128/256/512/1024/2048 (1024 ppr preferred)	
Limit frequency of the inputs		$\mathrm{f}_{\text {limit }}=200 \mathrm{kHz}$	
Limit speed, reference to $\mathrm{f}_{\text {lii }}$		for ppr 2048: 6000 rpm for ppr 1024 Imp.: 12000 rpm	

* Sensor leads must be connected to UB and \perp on the encoder, not to the inverter!

Fig. 12: Connection of TTL incremental encoders ES1T, ES2T or EV1T

1.5.13 FIT 31C "TF-/TH" evaluation

(Part number 822710 1)
Note: The FIT 31C TF/TH evaluation option cannot be used on MOVITRAC ${ }^{\circledR} 31 C 005$ / 007 / 011 / 014 units.

The temperature sensors (TF) and the bimetallic switches (TH) of the motor connected in series are connected to the FIT 31C option. The fault output terminal, 74, is connected to a binary input programmed to the function "EXT.FAULT". If the fault output $=0$, the unit will trigger a rapid stop.

Technical Data:

Fig. 13: Wiring diagram for the FIT 31C option 01742AEN
The FIT31C option has the same supply voltage level as the control board. If a circuit is connected to control board of the unit which is not safety-separated, the MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ protection by electrical separation is no longer given.

1.5.14 FRS 31C synchronous operation control

(Part number 822300 9)
Note: The FRS 31C synchronous operation control cannot be used on size 0 MOVITRAC ${ }^{\circledR}$ 31C005/007/011/014 units.

The FRS 31C option enables a group of asynchronous motors (1 master and max. 10 slaves) to be operated in angular synchronism to one another or at an adjustable proportional ratio. The principle behind synchronous operation control is the constant comparison of the angular position of the slave motor and the master motor. For this purpose, the master and slave motors must be fitted with encoders (pulse encoders) that output the same number of pulses per revolution.
Important: The synchronous operation control function is only implemented for parameter set 1. P350 "Parameter set selection" = "Yes" and TL. $50=$ " 1 " will cause the synchronous operation control to be deactivated.

The FRS 31C option comprises:

- the FEN 31C option
- the FES 31C option

Further requirements for synchronous operation control on the slave drive:

- MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ with active "Synchronous operation control" function (P76_)
- Motor fitted with an encoder (number of pulses per revolution 128/256/512/1024/2048/TTL technology)
- Appropriately sized braking resistor for the MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$

The master drive can be operated either with a MOVITRAC® 31 C in V/f mode or under speed control or, without a frequency inverter, directly from the input. If supplied directly from the input, the encoder of the master drive must have its own external voltage supply.

Type of option Part number		FES 31C synchronous operation 8222991
Pulse inputs on slave $A / \bar{A}, B / \bar{B}$	TL. 98-101	+ 5 V , TTL level (RS-422)
No. of encoder pulses per channel and revolution$(\rightarrow \text { P773 })$		128*/256*/512/1024/2048 (preferred number of pulses per revolution: 1024)
Limit frequency of input pulses		$\mathrm{f}_{\text {limit }}=200 \mathrm{kHz}$
LED V 11 (green): to show the angular difference		ON = angular difference > value of P555 OFF = angular difference < value of P555
LED V 12 (red)		$\mathrm{ON}=$ slave is free-running/OFF = slave is synchronizing
Binary inputs		Isolated by optocouplers, $\mathrm{R}_{\mathrm{i}} \approx 3 \mathrm{k} \Omega$, Sample time $\leq 5 \mathrm{~ms}$ PLC compatible
Input mode		$\begin{aligned} & (+13 \ldots+30) V \wedge " 1 " \text { contact closed } \\ & (+3 \ldots+5) \vee \triangleq \text { " } 0 \text { " contact open (EN 61131-2) } \end{aligned}$
Control functions	TL. 102 TL. 103/104/105 TL. 48/49/50/51	Modes 6/7 "1" = free-running "0" = synchronous mode Modes 6/7 "1" = free-running "0" = synchronous mode programmable binary inputs (\rightarrow P60_) Control functions \rightarrow the MOVITRAC ${ }^{\circledR}$ 31C.. Operating Instructions, Sec. 4.4, e.g. FRS CTRL/FRS zero/FRS slave start/ FRS teach in
Binary outputs Output mode Control functions	KI. 63/64	Response time $\leq 5 \mathrm{~ms}, I_{\max }=50 \mathrm{~mA}$ " 0 " $\xlongequal{\wedge} 0 \mathrm{~V}, ~ " 1 " \triangleq 24 \mathrm{~V}$, PLC compatible Important: Do not apply separate source voltage! programmable binary outputs (\rightarrow P61_) Control functions \rightarrow the MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$.. Operating Instructions, Sec. 4.4
Terminals		Separable; grid $=3.8 \mathrm{~mm}$ (0.15 in) Suitable for wire cross sections up to $0.75 \mathrm{~mm}^{2}$ or AWG18
Dimensions	W x H x	$80 \times 160 \times 20 \mathrm{~mm}$ ($3.15 \times 6.30 \times 0.79 \mathrm{in}$)
RAM battery	type battery service life	Standard CR 2430 battery, spare batteries not supplied by SEW > 10 years; dispose of used batteries legally
Maximum usable frequency	(\rightarrow P 202)	$\mathrm{f}_{\text {max }}=120 \mathrm{~Hz}$

00515AEN
Fig. 14: FES 31C option

	FES 31C option terminal functions
X18	
44	+ 24 V
$\begin{aligned} & 48 \\ & 49 \\ & 50 \\ & 51 \end{aligned}$	Binary inputs (isolated by optocouplers) $\begin{aligned} & \mathrm{R}_{\mathrm{i}}=3.0 \mathrm{k} \Omega \\ & +13 \ldots+30 \mathrm{~V} \xlongequal{ } \text { "1" }=\text { contact closed } \\ & -3 \ldots+5 \mathrm{~V} \cong \text { " } 0 \text { " contact open } \end{aligned}$ (freely programmable; control functions $\rightarrow \mathrm{P} 60$ _)
60	Reference potential for TL. 48/49/50/51
30	Ground 24 V
$\begin{aligned} & \hline 63 \\ & 64 \end{aligned}$	Binary outputs Current rating $I_{\text {max }}=50 \mathrm{~mA}$ Relay driver for external relays (freely programmable; control functions \rightarrow P 61_) Important: Do not apply separate source voltage!
X16	Setpoint pulse inputs
98	Input from master: channel A
99	Input from master: channel $\overline{\mathrm{A}}$
100	Input from master: channel B
101	Input from master: channel \bar{B}
X17	Input commands for modes of operation (P 764)
102	Free-running (+24V) = "1" Synchronous operation = "0" in modes 1/2 / 3 / 4 / 5 / 8
103	Offset $1(+24 \mathrm{~V})=$ "1" Synchronous operation = "0" in modes $6 / 7$
104	Offset $2(+24 \mathrm{~V})=$ "1" Synchronous operation = "0" in modes $6 / 7$
105	Offset $3(+24 \mathrm{~V})=$ "1" Synchronous operation = "0" in modes $6 / 7$

For further information please refer to the system description for the FRS 31C.. option (order no. 0922 4319).

1.5.15 FFP 31C PROFIBUS interface

(Part number 822317 3)
Note: The FFP 31C interface cannot be used on size 0 MOVITRAC ${ }^{\circledR} 31$ C005/007/011/014 units.

The FFP 31C interface enables the drive to be connected to higher-level automation systems via the serial PROFIBUS-FMS and PROFIBUS-DP bus systems.

PROFIBUS-FMS (Fieldbus Message Specification) is designed for non-time-critical applications in automation engineering. In drive engineering the PROFIBUS-FMS is mainly used for visualization of data and for parameter setting of drives as it allows for larger amounts of non-time-critical data to be exchanged in a simple way. PROFIBUS-FMS is defined in DIN 19245 Part 2.

PROFIBUS-DP (Decentralized Periphery) is mainly used for communication with decentralized peripherals, i.e. in the sensor/actuator area, where short system reaction times are required. The main task of PROFIBUS-DP is the fast cyclic data exchange between central automation units (PROFIBUS master) and decentralized peripherals, among them frequency inverters.
PROFIBUS-DP is defined in DIN 19245 Part 3.
The FFP 31C as Combislave supports both PROFIBUS-FMS and PROFIBUS-DP. This allows the MOVITRAC ${ }^{\circledR}$ 31C inverter to be controlled via PLC and PROFIBUS-DP while at the same time a visualization system can read out and display actual values from the MOVITRAC ${ }^{\circledR}$ 31C using PROFIBUS-FMS on a PC monitor. Of course the MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ inverter may be controlled and its parameters set using only PROFIBUS-DP or only PROFIBUS-FMS.

To read and edit fieldbus parameters you will either need the FBG 31C keypad or a serial interface option (USS21A; see Sec. 1.5.9) and the MC_SHELL user software, version V2.90 or higher.

The MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ frequency inverter is connected to the PROFIBUS network via a 9 pin type D connector in accordance with DIN 19245 Part 3. Connection to the bus is with an appropriately designed connector or a bus terminal. As the bus terminating resistors on the interface can be connected, it is not necessary to use a type D connector with integrated terminating resistors.

Fig. 15: Assignment of the 9 pin type D connector to DIN 19245
As aids for ease of installation, "DDB" and "type" files are available for MOVITRAC ${ }^{\circledR}$ 31C. These files are part of the fieldbus documentation package (order no. 0922 7210).

For further information please refer to the manual for the FFP 31C interface.

1.5.16 FFI 31C INTERBUS interface

(Part number 822316 5)
Note: The FFI 31C interface cannot be used on MOVITRAC ${ }^{\circledR} 31$ C005/007/011/014 units.

The FFI 31C interface enables the drive to be connected to higher-level automation systems via the open and standardized serial INTERBUS sensor/actuator system.

INTERBUS specifications are set forth in the DIN 19528 standard and its functions are comprised of a process data channel and a parameter data channel. This allows user-friendly control and parameter adjustment of intelligent digital actuators such as the MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ frequency inverters.

To read and edit fieldbus parameters you will either need the FBG 31C keypad or a USS21A serial interface option (see Sec. 1.5.9), and the MC_SHELL user software, version V2.90 or higher.

On the FFI 31C interface, there is a 9 pin sub D connector for the incoming remote bus and a 9 pin sub D socket for the outgoing remote bus.

00306AEN
Fig. 16: Assignment of the 9 pin type D connector for the incoming remote bus cable

1.5.17 FFD 31C DeviceNet fieldbus interface

(Part number 822814 0)

Note: The FFD 31C DeviceNet Fielbus Interface cannot be used on MOVITRAC ${ }^{\circledR} 31$ C005/007/011/014 units.

The FFD 31C DeviceNet Fieldbus Interface allows connection to the serial bus DeviceNet network.
DeviceNet functionally consists of a process data and a parameter data channel. It makes controlling and programming intelligent actuators such as frequency inverters MOVITRAC® ${ }^{\circledR} 31 \mathrm{C}$ very straightforward.

To read and edit fieldbus parameters, you will either need the FBG 31C keypad or a USS21A serial interface option (Sec. 1.5.9) and the MC_SHELL user software, version 2.90 or higher.

The MOVITRAC ${ }^{\circledR}$ 31C is connected to the DeviceNet with a 5 -pole connector (grid dimensions: 5.08 mm). The assignment of the connector terminals is described in the DeviceNet Specification, Volume I, Appendix A.

					Meanin		Color
FFD31C Option card				1	V-	OV24	black
				2	CAN_L	CAN_L	blue
				3	DRAIN	DRAIN	not assigned
	2	3		4	CAN_H	CAN_H	white
				5	V+	24 V	red

Fig. 18: Terminal assignment
For further information, please refer to the FFD31C Option Manual (order no. 0919 6617).

1.5.18 FPI 31C IPOS positioning control

(Part number 822304 1)
Note: The FPI 31C IPOS positioning control cannot be used on MOVITRAC ${ }^{\circledR} 31$ C005/007/011/014 units.

The wiring diagram and technical data are identical to those of the FEN 31C option (\rightarrow Sec. 1.5.12).
The IPOS positioning control provides a user-friendly means to perform point-to-point positioning with the MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$.. frequency inverter.

The IPOS positioning control offers the following features:

- It supports fieldbus operation and serial communications through the RS-485 and RS-232 interfaces.
- It relieves the higher-level positioning control (e.g. PLC or IPC) from positioning tasks.
- It economizes on the use of proximity/limit switches compared to positioning by creep speed and use of brake and at the same time increases the cycle rates.
- Position-controlled operation is also possible for hoists and at standstill.
- Positioning by tables, a maximum of 32 positions can be permanently stored.
- Teach-in mode.
- High positioning accuracy.
- Programming interface integrated into the MC_SHELL user interface.

Required system components

- MOVITRAC ${ }^{\circledR}$ 31C.. frequency inverter, sizes 1, 2, 3 or 4.
- FPI 31.. option, this also provides the encoder supply (5 V).
- Incremental encoder (RS-422/ TTL) with zero channel fitted onto the motor shaft. Pulses per revolution of 128/256/512/1024/2048 ppr, 1024 ppr are preferred.
- 4-quadrant operation and a braking resistor (BW) are always required.

Expansion options (only one option possible at a time):

- Fieldbus interfaces
- PROFIBUS-DP and -FMS with FFP 31... or INTERBUS with FFI 31..
- Terminal expansion options ($4 / 2$ digital inputs/outputs in the basic unit)
- FEA 31.. 4/2 digital inputs/outputs, RS-485, analog functions
- FIO 31.. 7/6 digital inputs/outputs, RS-485

Setpoint sources:

Setpoint sources for positioning control		- Analog input n2 as override input or for teach setpoint
Analog input		
PC interface (USS 11A or UST 11A)		
FIELDBUS (FFP 31.. or FFI 31)		

For further information please refer to the manual for the FPI 31.. IPOS option (Best.-Nr. 0923 0610).

1.5.19 BW.. braking resistors for MOVITRAC ${ }^{\circledR}$ 31C...-503

The BW... braking resistors are matched to the technical characteristics of the MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ series of frequency inverters.

- Braking resistors in flat-pack design:
- Safe to touch (IP 54) (NEMA 12).
- Internal thermal overload protection (not replaceable)
- Touch guard with DIN rail mounting available as accessory from SEW
- A space-saving heat sink for mounting underneath sizes 1 and 2 MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ units (31C008...31C075) can be ordered from SEW.
- Wire and steel grid resistors
- Perforated metal sheet housing (IP20, NEMA 1), open towards the mounting surface
- The short-term load rating for the wire and steel grid resistors is higher than that for flat-pack resistors (\rightarrow power rating diagrams).
We recommend providing additional overload protection for the braking resistor by connecting a bimetallic relay in the lead to the braking resistor. The trip current must be set to the $I_{\text {trip }}$ value given in the table.
The surface of the resistor reaches a high temperature when operated at P_{N}. This must be taken into account when installing the braking resistors. For this reason, braking resistors are usually mounted on top of the switch cabinet (with MOVITRAC ${ }^{\oplus} 31$ C005/007/011/014 the braking resistors type BW200-003 and BW100-003 can also be installed inside the units).
The power data in the following tables show the regenerative power rating of the braking resistors depending on the braking duty cycle.
(cdf = cyclic duration factor of the braking resistor in \% related to a duty cycle time of $\leq 120 \mathrm{~s}$).
The upper power limit results from the regenerative power limit of the different inverter types = 150% of the recommended motor power.

Braking resistor type Part number	$\begin{array}{\|l\|} \hline \text { BW200-003 } \\ 8262675 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { BW200-005 } \\ & 8262705 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { BW100-003 } \\ 8262667 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { BW100-005 } \\ & 8262691 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { BW100-002 } \\ 8217009 \end{array}$	$\begin{aligned} & \hline \text { BW100-006 } \\ & 8217017 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { BW068-002 } \\ 8216924 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { BW068-004 } \\ & 8216932 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { BW047-003 } \\ 8262659 \\ \hline \end{array}$
Regenerative 100\% cdf ${ }^{11}$	$0.23 \mathrm{~kW}^{2)}$	$0.45 \mathrm{~kW}^{2)}$	$0.23 \mathrm{~kW}^{2}$	$0.45 \mathrm{~kW}^{2)}$	0.2 kW	0.6 kW	0.2 kW	0.4 kW	$0.24 \mathrm{~kW}^{2)}$
power rating 50\% cdf	0.31 kW	0.60 kW	0.31 kW	0.60 kW	0.4 kW	1.1 kW	0.4 kW	0.7 kW	0.35 kW
25\% cdf	0.43 kW	0.79 kW	0.42 kW	0.83 kW	0.6 kW	1.9 kW	0.6 kW	1.2 kW	0.52 kW
12\% cdf	0.58 kW	1.06 kW	0.59 kW	1.11 kW	1.2 kW	3.5 kW	1.2 kW	2.4 kW	0.71 kW
6\% cdf	1.02 kW	1.76 kW	1.04 kW	2.00 kW	1.9 kW	5.7 kW	1.9 kW	3.8 kW	1.30 kW
	Observe the regenerative power limit of the inverters! (= 150% of the recommended motor power; refer to Technical Data)								
Resistance value	$200 \Omega \pm 10 \%$		$100 \Omega \pm 10 \%$				$68 \Omega \pm 10 \%$		$47 \Omega \pm 10 \%$
Trip current (of F16) I_{F}	$0.23 \mathrm{~A}_{\text {AC }}$	$0.46 \mathrm{~A}_{\text {AC }}$	$0.4 \mathrm{~A}_{\text {AC }}$	$0.79 \mathrm{~A}_{\text {AC }}$	$0.72 \mathrm{~A}_{\text {AC }}$	$1.8 \mathrm{~A}_{\text {AC }}$	$0.8 \mathrm{~A}_{\text {AC }}$	$1.4 \mathrm{~A}_{\text {AC }}$	$0.7 \mathrm{~A}_{\text {AC }}$
Design	Flat-pack design				Wire resistor on ceramic tube				Flat-pack des.
Electr. connections	Connecting lead, length approx. 500 mm or 20 in				Ceramic terminals for $2.5 \mathrm{~mm}^{2}$ or AWG 14				Cable
Enclosure	IP 54, NEMA 12				IP 20, NEMA 1 (when mounted)				IP 54
Ambient operating $\vartheta_{\text {amb }}$ temperature	$-20 \ldots+45^{\circ} \mathrm{C}$								
Type of cooling	KS = Natural cooling								
For use with MOVITRAC ${ }^{\circledR}$	31C005...31C015		31C022 ... 31C030						

[^1]| Braking resistor type Part number | $\begin{array}{\|l\|} \hline \text { BW047-005 } \\ 8262683 \\ \hline \end{array}$ | $\begin{aligned} & \hline \text { BW147 } \\ & 8207135 \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { BW247 } \\ 8207143 \\ \hline \end{array}$ | $\begin{aligned} & \hline \text { BW347 } \\ & 8207984 \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { BW018-015 } \\ 8216843 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \text { BW018-035 } \\ 8216851 \\ \hline \end{array}$ | $\begin{aligned} & \hline \text { BW018-075 } \\ & 821686 \text { X } \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { BW915 } \\ 8212600 \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Regenerative 100% cdf 1$)$
 power rating 50% cdf
 25% cdf
 12% cdf
 6% cdf | 0.45 kW | 1.2 kW | 2.0 kW | 4.0 kW | 1.5 kW | 3.5 kW | 7.5 kW | 16 kW |
| | 0.60 kW | 2.2 kW | 3.8 kW | 7.6 kW | 2.5 kW | 5.9 kW | 12.7 kW | 27 kW |
| | 0.83 kW | 3.8 kW | 6.4 kW | 12.8 kW | 4.5 kW | 10.5 kW | 22.5 kW | 48 kW |
| | 1.11 kW | 7.2 kW | 12.0 kW | 19.2 kW ${ }^{\text {) }}$ | 6.7 kW | 15.7 kW | 33.7 kW | 60.1 kW ${ }^{2}$ |
| | 2.00 kW | 11.0 kW | 19.0 kW | 19.2 kW ${ }^{\text {) }}$ | 11.4 kW | 26.6 kW | 50.1 kW ${ }^{\text {) }}$ | 60.1 kW ${ }^{\text {) }}$ |
| | Observe the regenerative power limit of the inverters! (= 150 \% of the recommended motor power; refer to Technical Data) | | | | | | | |
| Resistance value | $47 \Omega \pm 10 \%$ | | | | $18 \Omega \pm 10 \%$ | | | $15 \Omega \pm 10 \%$ |
| Trip current (of F16) $\quad \mathrm{I}_{\mathrm{F}}$ | $1.1 \mathrm{~A}_{\text {AC }}$ | $3.5 \mathrm{~A}_{\text {AC }}$ | $4.9 \mathrm{~A}_{\text {AC }}$ | $7.8 \mathrm{~A}_{\text {AC }}$ | 4.0 $\mathrm{A}_{\text {AC }}$ | $8.1 \mathrm{~A}_{\text {AC }}$ | $14 \mathrm{~A}_{\text {AC }}$ | $28 \mathrm{~A}_{\text {AC }}$ |
| Design | Flat-pack design | Wire resistor | Wire resistor on ceramic tube | | Steel grid resistor | | | |
| Electr. connections | Connector cable | Ceramic terminals for $2.5 \mathrm{~mm}^{2}$ or AWG 14 | | | | | | M8 bolt |
| Enclosure | IP 54
 (NEMA 12) | IP 20, NEMA 1 (when mounted) | | | | | | |
| Ambient operating temperature | $-20 \ldots+45^{\circ} \mathrm{C}$ | | | | | | | |
| Type of cooling | KS = Natural cooling | | | | | | | |
| For use with MOVITRAC ${ }^{\circledR}$ | 31C040...31C075 | | | | 31C110 ... 31C220/31C450 * | | | |

${ }^{1)} \mathrm{cdf}=$ cyclic duration factor of the braking resistor in $\%$ related to a duty cycle time of TD $\leq 120 \mathrm{~s}$.
${ }^{2)}$ Physical power limit due to DC link voltage and the resistance value.

* For MOVITRAC ${ }^{\circledR} 31 \mathrm{C} 450$ connect 2 braking resistors type BW018-... in parallel.

${ }^{1)}$ cdf $=$ cyclic duration factor of the braking resistor in \% related to a duty cycle time of $\mathrm{TD} \leq 120 \mathrm{~s}$.
${ }^{2)}$ Physical power limit due to DC link voltage and the resistance value.
The braking power decreases as a linear function of the braking time. The peak braking power at the start of the braking phase is twice as high as the calculated average braking power over the braking time. The resulting continuous regenerative power rating of the braking resistor (100% cdf) for a single braking operation within a cycle time T_{D} can be determined from the cdf braking power rating with the following diagrams:

Fig. 19: Power rating diagram for resistors in flat-pack design (IP54)

Fig. 20: Power rating diagram for wire, laminated and steel grid braking resistors (IP20)
Example for braking resistor selection:
For a short-time braking power demand of 5 kW and a duty cycle of 40% a braking resistor with a continuous regenerative power rating of 2 kW is required.

For further information please refer to "Drive Engineering - Practical Implementation, Volume 5" publication number 0922 2812, available from SEW.

Peak braking power:

Due to the DC link voltage and the resistance value the peak braking power can be less than the load capacity of the braking resistor. The peak braking power is calculated as follows:

$$
P_{\max }=V_{D C}^{2} / R
$$

$V_{D C}$ is the switch-in threshold of the brake chopper, it lies at $V_{D C}=950 V_{D C}$.
The following table gives the peak braking power values possible for the various resistance values.

Resistance value $[\Omega]$	Peak braking load [kW]
200	4.5
100	9.0
68	13.2
47	19.2
18	50.1
15	60.1
12	75.2

1.5.20 BW... braking resistors for MOVITRAC ${ }^{\circledR}$ 31C...-233

The following resistors are recommended for use with MOVITRAC® 31C...-233 units.

Braking resistor type Part number	$\begin{array}{\|l\|} \hline \text { BW100-003 } \\ 8262667 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { BW100-005 } \\ & 8262691 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { BW100-002 } \\ & 8217009 \end{aligned}$	$\begin{aligned} & \hline \text { BW100-006 } \\ & 8217017 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { BW039-003 } \\ & 8216878 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { BW039-006 } \\ 8216886 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { BW039-012 } \\ & 8216894 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { BW039-026 } \\ 8216908 \\ \hline \end{array}$
Regenerative $100 \% \mathrm{cdf}{ }^{1}$ power rating $50 \% \mathrm{cdf}$ $25 \% \mathrm{cdf}$ $12 \% \mathrm{cdf}$ $6 \% \mathrm{cdf}$	$\begin{aligned} & \hline 0.23 \mathrm{~kW}{ }^{2)} \\ & 0.31 \mathrm{~kW} \\ & 0.42 \mathrm{~kW} \\ & 0.59 \mathrm{~kW} \\ & 1.04 \mathrm{~kW} \\ & \hline \end{aligned}$	$\begin{aligned} & \left.\hline 0.45 \mathrm{~kW}^{2}\right) \\ & 0.60 \mathrm{~kW} \\ & 0.83 \mathrm{~kW} \\ & 1.11 \mathrm{~kW} \\ & 2.00 \mathrm{~kW} \\ & \left.\quad \begin{array}{l} 0 \\ \quad(=150 \end{array}\right) \end{aligned}$	0.2 kW 0.4 kW 0.6 kW 1.2 kW 1.9 kW Observe the r \% of the reco	$\begin{aligned} & 0.6 \mathrm{~kW} \\ & 1.1 \mathrm{~kW} \\ & 1.9 \mathrm{~kW} \\ & 2.3 \mathrm{~kW} \\ & 2.3 \mathrm{~kW} \\ & \text { egenerative } \mathrm{p} \\ & \text { mmended mo } \end{aligned}$	$\begin{aligned} & 0.3 \mathrm{~kW} \\ & 0.5 \mathrm{~kW} \\ & 1.0 \mathrm{~kW} \\ & 1.7 \mathrm{~kW} \\ & 2.8 \mathrm{~kW} \end{aligned}$ power limit otor power;	0.6 kW 1.1 kW 1.9 kW 3.5 kW 5.7 kW f the inverters efer to Techni	1.2 kW 2.1 kW 3.8 kW 7.0 kW $\left.5.9 \mathrm{~kW}^{3}\right)$ c ! cal Data)	$\begin{aligned} & \hline 2.6 \mathrm{~kW} \\ & 4.6 \mathrm{~kW}^{3} \\ & 5.9 \mathrm{~kW}^{3)} \\ & 5.9 \mathrm{~kW}^{3)} \\ & 5.9 \mathrm{~kW}^{3)} \end{aligned}$
Resistance value $\quad \mathrm{R}_{\mathrm{BR}}$	$100 \Omega \pm 10 \%$				$39 \Omega \pm 10 \%$			
Trip current (of F16) I_{F}	$0.5 \mathrm{~A}_{\text {AC }}$	$1.2 \mathrm{~A}_{\text {AC }}$	$1.2 \mathrm{~A}_{\text {AC }}$	$2.3 \mathrm{~A}_{\text {AC }}$	$2.0 \mathrm{~A}_{\text {AC }}$	$3.2 \mathrm{~A}_{\text {AC }}$	$5.0 \mathrm{~A}_{\text {AC }}$	$7.8 \mathrm{~A}_{\text {AC }}$
Design	Flat-pac	k design	Wire resistor on ceramic tube					
Electr. connections	Connec approx. 500	ing lead, mm or 20 in	Ceramic terminals for $2.5 \mathrm{~mm}^{2}$ or AWG 14					
Enclosure	IP 54 (N	EMA 12)	IP20 (NEMA 1) (when mounted)					
Ambient operating temperature $\quad \vartheta_{\text {amb }}$	$-20 \ldots+45^{\circ} \mathrm{C}$							
Type of cooling	KS = Natural cooling							
For use with MOVITRAC ${ }^{\circledR}$	31C005 / 31C011				31C008 / 31C015 / 31C022			

${ }^{1)}$ cdf $=$ cycling duration factor of the braking resistor in $\%$ applied to a duty cycle time of $\leq 120 \mathrm{~s}$.
${ }^{2)}$ The regenerative power rating applies to horizontal mounting. If mounted vertically, these values reduce by 10%.
${ }^{3)}$ Physical power limit due to DC link voltage and resistance value.

Braking resistor type Part number	$\begin{array}{\|l\|} \hline \text { BW027-006 } \\ 8224226 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { BWO27-012 } \\ 8224234 \end{array}$	$\begin{array}{\|l\|} \hline \text { BW012-025 } \\ 8216800 \end{array}$	$\begin{array}{\|l\|} \hline \text { BW012-050 } \\ 8216819 \end{array}$	$\begin{array}{\|l\|} \hline \text { BW012-100 } \\ 8216827 \end{array}$
Regenerative $100 \% \mathrm{cdf}^{1}{ }^{1}$ $50 \% \mathrm{cdf}$ $25 \% \mathrm{cdf}$ $12 \% \mathrm{cdf}$ $6 \% \mathrm{cdf}$	0.6 kW 1.2 kW 2.0 kW 3.5 kW 6.0 kW	1.2 kW 2.3 kW 5.0 kW 7.5 kW $\left.8.5 \mathrm{~kW}^{2}\right)$ \quad Observe the 150% of the re	2.5 kW 4.2 kW 7.5 kW 11.2 kW 19.0 kW nerative pow mended motor	5.0 kW 8.5 kW 15.0 kW $\left.19.2 \mathrm{~kW}^{2}\right)$ $19.2 \mathrm{~kW}^{2)}$ t of the inverte refer to Tech	$\begin{aligned} & 10 \mathrm{~kW} \\ & 17 \mathrm{~kW} \\ & 19.2 \mathrm{~kW}^{2)} \\ & 19.2 \mathrm{~kW}^{2)} \\ & \left.19.2 \mathrm{~kW}^{2}\right) \end{aligned}$ ata)
Resistance value $\quad \mathrm{R}_{\text {BR }}$	$27 \Omega \pm 10$ \%		$12 \Omega \pm 10 \%$		
Trip current (of F16) I_{F}	$2.5 \mathrm{~A}_{\text {AC }}$	4.4 $\mathrm{A}_{\text {AC }}$	$10 \mathrm{~A}_{\text {AC }}$	$19 \mathrm{~A}_{\text {AC }}$	$27 \mathrm{~A}_{\text {AC }}$
Design	Wire res	on ceramic tube		Steel grid r	
Electr. connections	Ceramic terminals for $2.5 \mathrm{~mm}^{2}$ AWG 14				
Enclosure	IP20 (NEMA 1) (when mounted)				
$\begin{array}{ll} \hline \begin{array}{l} \text { Ambient operating } \\ \text { temperature } \end{array} & \vartheta_{\text {amb }} \\ \hline \end{array}$	$-20 \ldots+45^{\circ} \mathrm{C}$				
Type of cooling	KS = Natural cooling				
For use with MOVITRAC ${ }^{\circledR}$	$31 \mathrm{CO37}$		31C055 / 31C075		

${ }^{1)}$ cdf = cycling duration factor of the braking resistor in \% applied to a duty cycle time of $\leq 120 \mathrm{~s}$.
${ }^{2)}$ Physical power limit due to DC link voltage and resistance value.
$V_{D C}=480 \mathrm{~V}$

Resistance value $[\Omega]$	Peak braking load $[\mathbf{k W}]$
100	2.3
39	5.9
27	8.5
12	19.2

The following diagram shows the regenerative power characteristics for the BW039-003/039-006/ 039-012/039-026/027-006/027-012 braking resistors. The characteristics for the remaining resistors are shown in Sec. 1.5.19, Fig. 19 and Fig. 20. Furthermore, the technical characteristics and selection notes in Sec.1.5.19 apply.

00579AEN
Fig. 21: Power rating diagram for braking resistors for MOVITRAC ${ }^{\circledR} 31 C . . .233$

1.5.21 FNP 020-503 supply buffer module

- For temporary supply in case of power failure

Type of supply buffer module Part number	FNP 020-503 8264325
Input voltage Permissible range	$\mathbf{V}_{\text {in }}$

The Supply Buffer Module serves as an energy reserve to bridge short duration power failures, for instance if the power is supplied with sliding contacts. It operates automatically if the input supply voltage temporarily drops. Power failures of even only milliseconds can therefore be bridged.
The time required to fully charge the capacitors and thereby provide the maximum puffer capacity can be as much as 15 seconds.

Determination of possible buffer time t_{p} :

- A buffer effect of the module without torque or speed interruption of the drive is only possible below the base frequency. With lower output frequencies the buffer effect of the frequency inverter increases.
- In the field weakening range, torque and speed disruptions on power interruptions can be expected.

Prerequisites: $\quad V_{\text {in }}=3 \times 400 \mathrm{~V}_{\mathrm{Ac}}$, Operation at rated load and rated speed

 3 phase power failure

00983AEN
Fig. 22: Buffer time t_{p} independent of motor power

- At reduced torque the buffer time t_{p} increases correspondingly:
$\mathrm{M}=50 \% \mathrm{M}_{\mathrm{N}} \Rightarrow 2 \times \mathrm{t}_{\mathrm{p}}$
$M=20 \% M_{N} \Rightarrow 2 \times t_{p}$
- The parallel connection of multiple supply buffer modules to increase the buffer capacity is permissible.
- With MOVITRAC ${ }^{\circledR}$ 31.. Parameter P530 (mains monitoring) must be set to "No".

1.5.22 NF...-... input filters for MOVITRAC ${ }^{\circledR}$ 31C...-503

- To suppress the emission of interference on the line side of frequency inverters.

Input filter type	NF 008-443	NF 016-443	NF 025-443	NF 036-443	NF 050-443	NF 080-4	3
Part number	8257213	8257191	8257183	8257175	8257167	8258309	8263531
Rated voltage $\quad \mathrm{V}_{\mathrm{N}} /$ Rated freq. f_{N}	$3 \times 400 \mathrm{~V}$ (max. operating voltage $=440 \mathrm{~V}_{\mathrm{AC}}$)						
For use with MOVITRAC ${ }^{\text {® }}$	31C005...	31C040...				(
Rated operation with short-term overload	$31 \mathrm{CO30}$	$31 \mathrm{CO75}$	31 C 110	$31 C 150$	$31 \mathrm{C220}$	31 C 370	$31 C 450$
Continous operation at incr. power output without overload	$\begin{aligned} & 31 C 005 \ldots . . \\ & 31 C 022 \end{aligned}$	$\begin{aligned} & \hline 31 \mathrm{CO30} . . . \\ & 31 \mathrm{C} 055 \end{aligned}$	$\begin{aligned} & 31 C 075 / \\ & 31 C 110 \end{aligned}$	31C150	31 C 220	31 C 300	$\begin{aligned} & 31 \mathrm{C} 370 / \\ & 31 \mathrm{C} 450 \end{aligned}$
Input filter type	NF 008-503	NF 016-503	NF 025-503	NF 036-503	NF 050-503	NF 080-503	NF 110-503
Part number	8258317	8258325	8258333	8258341	825835 X	826077 X	826354 X
Rated voltage $\quad \mathrm{V}_{\mathbf{N}} /$ Rated freq. f_{N}	$3 \times 500 \mathrm{~V}$ (max. operating voltage $=550 \mathrm{~V}_{\mathrm{AC}}$)						
Rated current	$8 \mathrm{~A}_{\text {AC }}$	$16 A_{A C}$	$25 \mathrm{~A}_{\text {AC }}$	$36 A_{\text {AC }}$	$50 \mathrm{~A}_{\text {AC }}$	$80 \mathrm{~A}_{\text {AC }}$	$110 \mathrm{~A}_{\text {AC }}$
Power losses $\mathrm{P}_{\text {loss }}$ at I_{N}	8.0 W	9.0 W	9.0 W	10.5 W	13.0 W	26.0 W	28.0 W
AC leakage current at $\mathrm{V}_{\mathbf{N}}\left(\mathrm{f}_{\text {in }}=60 \mathrm{~Hz}\right)$ determined under worst-case conditions	$\leq 2 \mathrm{~mA}$		$\leq 15 \mathrm{~mA}$		$\leq 20 \mathrm{~mA}$	$\leq 25 \mathrm{~mA}$	
Ambient temperature $\vartheta_{\text {amb }}$	$-25 . . .45^{\circ} \mathrm{C}$						
Enclosure	IP 20 (EN 60529) (NEMA 1)						
Weight [kg (lb)]	1.7 (3.7) 3.0 (6.6)			3.2 (7.1)		9.5 (20.9)	
$\begin{array}{ll}\text { Terminal cross-section } & \text { L1-L3/L1'-L3' } \\ & \text { PE }\end{array}$	$\begin{aligned} & 4 \mathrm{~mm}^{2}, \text { AWG } 12 \\ & \text { M6 screw } \end{aligned}$		$10 \mathrm{~mm}^{2}$, AWG 8			$\begin{aligned} & 25 \mathrm{~mm}^{2} \\ & \text { AWG } 4 \end{aligned}$	$\begin{aligned} & 50 \mathrm{~mm}^{2} \\ & \text { AWG } 0 \end{aligned}$
For use with MOVITRAC ${ }^{\circledR}$ type Rated operation with short-term overload	$\begin{array}{\|l\|} 31 C 055 / \\ 31 C 040 \end{array}$	$\begin{array}{\|l\|} \hline 31 C 055 / \\ 31 C 110 \end{array}$	$31 C 150$	$31 \mathrm{C220}$	$31 C 300$	$\begin{aligned} & 31 \mathrm{C} 370 / \\ & 31 \mathrm{C} 450 \end{aligned}$	-
Continuous operation at increased power output without overload	$\begin{array}{\|l\|} \hline 31 C 005 / \\ 31 C 030 \\ \hline \end{array}$	$\begin{aligned} & 31 C 040 / \\ & 31 C 075 \end{aligned}$	31 C 110	$31 C 150$	31 C 220	$\begin{aligned} & 31 C 300 / \\ & 31 C 370 \\ & \hline \end{aligned}$	31 C 450

1.5.23 EF...-503 EMC modules for MOVITRAC ${ }^{\circledR}$ 31C...-503 and -233

- To suppress the emission of interference on the line and output sides of frequency inverters.

Note: The EMC modules are base mounted filters and are mounted between the rear wall of the switch cabinet and the converter.

EMC module type Part number	$\begin{array}{\|l\|l\|} \hline \text { EF014-503 } \\ 8263841 \end{array}$	$\begin{aligned} & \text { EF030-503 } \\ & 826385 \text { X } \end{aligned}$	$\begin{aligned} & \hline \text { EF075-503 } \\ & 8263868 \end{aligned}$	$\begin{aligned} & \hline \text { EF220-503 } \\ & 8265534 \end{aligned}$	$\begin{aligned} & \hline \text { EF450-503 } \\ & 8265542 \end{aligned}$
Rated voltage $\mathbf{V}_{\mathbf{N}}$	$3 \times 200 \mathrm{~V}_{\mathrm{AC}}-10 \% \ldots 3 \times 500 \mathrm{~V}_{\mathrm{AC}}+10 \%$				
Voltage drop in the filter (with rated current)	<1\%				
Rated through current I_{N}	$5 \mathrm{~A}_{\text {AC }}$	$10 \mathrm{~A}_{\text {AC }}$	$20 \mathrm{~A}_{\text {AC }}$	$60 \mathrm{~A}_{\text {AC }}$	$115 \mathrm{~A}_{\text {AC }}$
Rated frequency f_{N}	$50 / 60 \mathrm{~Hz}$				
AC leakage current Δ I	< 12 mA			< 110 mA	<220 mA
Power losses (under rated conditions) $\mathrm{P}_{\text {loss }}$	12 W	16 W	20 W	69 W	216 W
Interference emission	to class B limit with unshielded motor cables to EN 55011 and EN 55014, complies with EN 50081 - Parts 1 and 2				
Ambient temperature $\bigcirc_{\text {amb }}$	$-25^{\circ} \mathrm{C} . . .45^{\circ} \mathrm{C}$ (derating above $+45^{\circ} \mathrm{C}: 3 \% \mathrm{I}_{\mathrm{N}}$ per K up to max. $60^{\circ} \mathrm{C}$)				
Enclosure	IP 20 (EN 60529) (NEMA 1)				
Weight [kg (lb)]	0.9 (1.98)	1.4 (3.09)	2.1 (4.63)	13 (28.67)	24 (52.92)
Type of connection mains and motor	Screw terminals $4 \mathrm{~mm}^{2}$ AWG 10			$25 \mathrm{~mm}^{2}$ (AWG4)	$35 \mathrm{~mm}^{2}$ (AWG2)
Type of connection inverter	Screw terminals $4 \mathrm{~mm}^{2}$ AWG 10			Leads with ring lugs	Leads with conductor end sleeve
for MOVITRAC ${ }^{\circledR} 31 .$.	Size 0	Size 1*	Size 2	Size 3	Size 4
...-503	005/007/011/014	008/015/022/030	040/055/055	110/150/220	300/370/450
...-233	005/001	008/015/022	037	055/075	-

[^2]
1.5.24 ND...-013 line chokes MOVITRAC ${ }^{\circledR} 31 \mathrm{C} . . .-503$

- To increase the overvoltage protection.
- To limit the charging current when several (max. 4) inverters are connected in parallel on one supply with a common input supply contactor, use a line choke which is appropriately sized for these inverters (line choke rated current = sum of the input rated currents of the inverters).

Line choke type Part number	$\begin{array}{\|l\|} \hline \text { ND 020-013 } \\ 8260125 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { ND 045-013 } \\ & 8260133 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { ND 085-013 } \\ & 8260141 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { ND1503 } \\ 8255482 \end{array}$
Rated voltage V_{N}	$3 \times 380 \mathrm{~V}_{\text {AC }}-10 \% \ldots 3 \times 500 \mathrm{~V}_{\mathrm{AC}}+10 \%$			
Rated current I_{N}	$20 \mathrm{~A}_{\text {AC }}{ }^{\text {* }}$	$45 \mathrm{~A}_{\text {AC }}{ }^{*}$	$85 \mathrm{~A}_{\text {AC }}{ }^{*}$	$150 \mathrm{~A}_{\text {AC }}{ }^{*}$
Inductivity $\mathrm{I}_{\mathrm{N}} \quad \mathrm{P}_{\mathbf{V}}$	10 W	15 W	25 W	65 W
Inductivity	0.1 mH	0.1 mH	0.1 mH	0.1 mH
Mains frequency $\mathrm{f}_{\text {in }}$	$50 / 60 \mathrm{~Hz}$			
Ambient temperature $\vartheta_{\text {amb }}$	$-25 \ldots+45^{\circ} \mathrm{C}$			
Enclosure	IP 00 (EN 60529) (open)			
Type of connection	$\begin{array}{\|l} \hline \text { Terminal strip } \\ 4 \mathrm{~mm}^{2} \text { (AWG 10) } \end{array}$	$\begin{aligned} & \text { Terminal strip } \\ & 10 \mathrm{~mm}^{2} \text { (AWG 10) } \end{aligned}$	$\begin{aligned} & \text { Terminal strip } \\ & 35 \mathrm{~mm}^{2} \text { (AWG 10) } \end{aligned}$	Screw-type termina M10
Weight [kg (lb)]	0.5 (1.1)	2.5 (5.5)	6.5 (14.3)	17 (37.5)
For use with MOVITRAC ${ }^{\circledR}$ Rated operation with short-term overload	31C005...31C040	31C150/31C220	31C300...31C450	-
Continuous operation at increased power output without overload	31C005...31C075	31C110/31C150	31C220/31C300	31C370/31C450

* If more than one MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ unit is connected to one line choke, the sum of the input rated currents of the connected units may not exceed this value!

1.5.25 HD 001 output chokes for MOVITRAC ${ }^{\circledR} 31 \mathrm{C} . . .-503$ and -233

- To suppress radiated interference of the unshielded motor cable.

We recommend feeding the motor cable through the output choke with 3 to 5 turns. In the case of large cable diameters less than 5, turns may be fed through the choke and instead 2 to 3 output chokes can be connected in series if required.

Output choke	HD 001	HD 002	HD 003
Part number	8133255	8135576	8135584
Dimensions W x H x D	$121 \times 64 \times 131 \mathrm{~mm}$	$66 \times 49 \times 73 \mathrm{~mm}$	$170 \times 64 \times 185 \mathrm{~mm}$
	$(4.76 \times 2.52 \times 5.16 \mathrm{in})$	$(2.60 \times 1.93 \times 2.87 \mathrm{in})$	$(6.69 \times 2.52 \times 7.28 \mathrm{in})$
Inside diameter d	$50 \mathrm{~mm}(1.97 \mathrm{in})$	$23 \mathrm{~mm}(0.91 \mathrm{in})$	$88 \mathrm{~mm}(4.46 \mathrm{in})$
Max. power losses P $_{\text {loss max }}$	15 W	8 W	30 W
Weight	$0.5 \mathrm{~kg}(1.1 \mathrm{lb})$	$0.2 \mathrm{~kg}(0.44 \mathrm{lb})$	$1.1 \mathrm{~kg}(2.42 \mathrm{lb})$
for cable cross section	$1.5 \ldots . .16 \mathrm{~mm}^{2}($ AWG16...6)	$\leq 1.5 \mathrm{~mm}^{2}($ AWG16 $)$	$\geq 16 \mathrm{~mm}^{2}($ AWG6 $)$

1.5.26 HF...-... output filters for MOVITRAC ${ }^{\circledR} 31 \mathrm{C} . . .-503$

HF.. output filters are sine-wave filters designed to smooth output voltage of frequency inverters to

- suppress emission of interference from the unshielded motor cable; in group drives (several motor cables running parallel).
- protect motor windings from overvoltage in the case of long motor cables (> 100 m or 328 ft).

Output filter type Part number	$\begin{aligned} & \text { HFO08-503 } \\ & 826029 \mathrm{X} \end{aligned}$	$\begin{aligned} & \text { HFO15-503 } \\ & 8260303 \end{aligned}$	$\begin{aligned} & \hline \text { HFO22-503 } \\ & 8260311 \end{aligned}$	$\begin{aligned} & \text { HFO30-503 } \\ & 826032 \mathrm{X} \end{aligned}$	$\begin{aligned} & \text { HFO40-503 } \\ & 8263116 \end{aligned}$
Rated voltage $\quad \mathbf{V}_{\mathbf{N}}$	$3 \times 380 \mathrm{~V}_{\mathrm{AC}}-10 \% \ldots 3 \times 500 \mathrm{~V}_{\mathrm{AC}}+10 \%$				
Voltage drop in the filter (at rated current)	$<6.5 \%$ at $400 \mathrm{~V} /<4 \%$ at 500 V				
$\begin{aligned} & \text { Rated through current* } \quad I_{N 400 V} \\ & {\text { (at } \left.V_{\text {in }}=3 \times 400 V_{A C}\right)} \end{aligned}$	$2.5 \mathrm{~A}_{\text {AC }}$				$10 \mathrm{~A}_{\text {AC }}$
$\begin{aligned} & \text { Rated through current* } \quad I_{N 500 V} \\ & \left(\text { at } V_{\text {in }}=3 \times 500 V_{A C}\right) \end{aligned}$	$2.0 \mathrm{~A}_{\text {AC }}$	$3 A_{A C}$	$5 \mathrm{~A}_{\text {AC }}$	$6 \mathrm{~A}_{\text {AC }}$	$8 \mathrm{~A}_{\text {AC }}$
Rated frequency** ${ }^{* *}$ rated	$50 / 60 \mathrm{~Hz}$				
Leakage current at $\mathrm{V}_{\mathrm{N}} \quad \Delta \mathrm{l}$	0 mA				
Power losses (under rated conditions) $P_{\text {loss }}$	25 W	35 W	55 W	65 W	90 W
Emission from unshielded motor cable	to class B limit to EN 55011 and EN 55014 complies with EN 50081 Parts 1 and 2				
Ambient temperature $\quad \vartheta_{\text {amb }}$	$0^{\circ} \mathrm{C}$... $45^{\circ} \mathrm{C}$ (derating: $3.0 \% \mathrm{I}_{\mathrm{N}}$ per K up to max. $60^{\circ} \mathrm{C}$)				
Enclosure	IP 20 (EN 60529) (NEMA1)				
Type of connection	terminal stud M4, 0.5 ... 6 mm² (AWG20...10)				
Weight [kg (b)]	3.1(6.8)	4.4 (9.7)			9.8(21.6)
For use with MOVITRAC ${ }^{\text {® }}$ 31C...-503		31C011...31C015	$31 \mathrm{CO22}$	$31 \mathrm{CO30}$	$31 \mathrm{CO40}$
Rated operation	31C005...31C008				
Continuous operation at increased power output	$31 \mathrm{C005}$	31C007...31C011	31C014/31C015	$31 \mathrm{CO22}$	31 CO 30

Output filter type Part number	$\begin{aligned} & \text { HFO55-503 } \\ & 8263124 \end{aligned}$	$\begin{aligned} & \text { HF075-503 } \\ & 8263132 \end{aligned}$	$\begin{aligned} & \hline \text { HFO23-403 } \\ & 8257841 \end{aligned}$	$\begin{aligned} & \text { HF033-403 } \\ & 825785 \mathrm{X} \end{aligned}$	$\begin{aligned} & \hline \text { HF047-403 } \\ & 8257868 \end{aligned}$
Rated voltage $\quad \mathrm{V}_{\mathrm{N}}$	$3 \times 380 \mathrm{~V}_{\text {AC }}-10 \% \ldots 3 \times 500 \mathrm{~V}_{\text {AC }}+10 \%$				
Voltage drop in the filter (at rated current)	$<6.5 \%$ at $400 \mathrm{~V} /<4 \%$ at 500 V				
$\begin{aligned} & \text { Rated through current* } \quad I_{N 400 V} \\ & \text { (at } V_{\text {in }}=3 \times 400 V_{A C} \text {) } \end{aligned}$	$12 \mathrm{~A}_{\text {AC }}$	$16 \mathrm{~A}_{\text {AC }}$	$23 \mathrm{~A}_{\text {AC }}$	$33 \mathrm{~A}_{\text {AC }}$	$47 \mathrm{~A}_{\text {AC }}$
	$10 \mathrm{~A}_{\text {AC }}$	$13 \mathrm{~A}_{\text {AC }}$	$19 \mathrm{~A}_{\text {AC }}$	$26 \mathrm{~A}_{\text {AC }}$	$38 \mathrm{~A}_{\text {AC }}$
Rated frequency** $\mathrm{f}_{\text {rated }}$	$50 / 60 \mathrm{~Hz}$				
Emission from the unshielded motor cable	to class B limit to EN 55011 and EN 55014 complies with EN 50081 Parts 1 and 2				
Leakage current at $\mathrm{V}_{\mathrm{N}} \quad \Delta \mathrm{l}$	0 mA				
Power losses (under rated conditions) $\mathrm{P}_{\text {loss }}$	115 W	135 W	90 W	120 W	200 W
Ambient temperature $\vartheta_{\text {amb }}$	$0^{\circ} \mathrm{C} . . .45^{\circ} \mathrm{C}$ (derating: $3.0 \% \mathrm{I}_{\mathrm{N}}$ per K up to max. $60^{\circ} \mathrm{C}$)				
Enclosure	IP 20 (EN 60529) (NEMA1)				
Terminal cross section	$10 \mathrm{~mm}^{2}$ (AWG8)		$25 \mathrm{~mm}^{2}$ (AWG4)		
Weight [kg (lb)]	10.6 (23.9)	12.1 (26.7)	15.9 (35.1)	16.5 (36.4)	23 (50.7)
For use with MOVITRAC ${ }^{\circledR} 31 \mathrm{C} . . .-503$	$31 \mathrm{CO55}$	$31 \mathrm{CO75}$	31 C110	31 C 150	31 C 220
Rated operation				31C300***	31C370/450***
Continuous operation at increased power output	$31 \mathrm{CO40}$	$31 \mathrm{C055}$	$31 \mathrm{CO75}$	$\begin{aligned} & 31 \mathrm{C} 110 \\ & 31 \mathrm{C} 220^{* * *} \end{aligned}$	$\begin{aligned} & \hline 31 C 150 \\ & 31 C 300 / 370^{* * *} \end{aligned}$

* applies only for operation without $V_{D C}$ link connection!
** above $\mathrm{f}_{\text {in }}=60 \mathrm{~Hz}$ the rated through current I_{N} is derated by $6 \% I_{N}$ for every 10 Hz increase in the MOVITRAC ${ }^{\circledR}$ output frequency $\mathrm{f}_{\text {outp }}$!
*** For operation on these MOVITRAC ${ }^{\circledR}$ units connect two HF...-.. output filters in parallel!
The voltage drop in the filter prohibits the use of output filters in hoists.

1.5.27 Selection of input filter/line choke/output filter and MOVITRAC ${ }^{\circledR}$ 31C...-233

The following selection tables apply for the selection of NF... input filter, ND... line choke, HF... and output filter and MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ units.

Input filter type Part number	$\begin{array}{\|l\|l\|} \hline \text { NFO08-443 } \\ 8257213 \end{array}$	$\begin{aligned} & \hline \text { NF016-443 } \\ & 8257191 \end{aligned}$	$\begin{aligned} & \hline \text { NFO25-443 } \\ & 8257183 \end{aligned}$	$\begin{aligned} & \text { NF036-443 } \\ & 8257175 \end{aligned}$
Rated voltage $\mathrm{V}_{\mathrm{N}} / \mathrm{f}_{\mathrm{N}}$	$3 \times 200 \mathrm{~V}_{\mathrm{AC}}-10 \% \ldots 3 \times 240 \mathrm{~V}_{\mathrm{AC}}+10 \% / 50 / 60 \mathrm{~Hz}$			
For use with MOVITRAC ${ }^{\circledR}$ type Rated operation with short-term overload	31C005...31-022	$31 C 037$	31C055	31C075
Continuous operation at incr. power output without overload	$\begin{aligned} & 31 C 005 / 31 \mathrm{C} 008 / \\ & 31 \mathrm{C} 011 \end{aligned}$	31C015/31C022	31 C037	31C055/31C075

Input filter type Part number	$\begin{array}{\|l\|l\|} \hline \text { NFO20-013 } \\ 8260125 \end{array}$	$\begin{aligned} & \hline \text { NFO45-013 } \\ & 8260133 \end{aligned}$
Rated voltage V_{N}	$3 \times 200 \mathrm{~V}_{\text {AC }}-10 \% \ldots 3 \times 240 \mathrm{~V}_{\text {AC }}+10 \%$	
Sum of input rated currents ΣI_{N}	$20 \mathrm{~A}_{\text {AC }}{ }^{\text {* }}$	$45 \mathrm{~A}_{\text {AC }}{ }^{*}$
For use with MOVITRAC ${ }^{\circledR}$ type Rated operation with short-term overload	31C005...31C055	31C075
Continuous operation at incr. power output without overload	31C005...31C037	31C055/31C075

* If more than one MOVITRAC ${ }^{\circledR} 31$ unit is connected to one line choke, the sum of the input rated currents of the connected units may not exceed this value!

Do not connect an HF output filter to the MOVITRAC ${ }^{\circledR}$ 31C...-233.

The technical data and notes of sections 1.5.22 and 1.5.24 must be observed.

1.6 Dimension drawings

All dimensions in mm (in)

1.6.1 MOVITRAC ${ }^{\circledR}$ 31C basic units (with FBG 31C option)

Important:
To provide sufficient cooling leave a minimum clearance of 100 mm (4 in) above and below each unit!
Lateral clearance is not required, the units may be mounted side by side.

MOVITRAC ${ }^{\circledR} \ldots-503$ 31C005/007/011/014

MOVITRAC ${ }^{\circledR}$...-233 31C005/011

00518BXX
Fig. 23: Dimension drawing size 0
$\underset{31 \text { MOVITRAC }{ }^{\circledR} \text {...-503 }}{ }$
31C008/015/022/030
MOVITRAC ${ }^{\circledR}$...-233 31C008/015/022

MOVITRAC ${ }^{\circledR} . .-503$ 31C040/055/075

MOVITRAC ${ }^{\circledR}$...-233 31 CO 37

00519BXX
Fig. 25: Dimension drawing size 2

MOVITRAC ${ }^{\circledR}$...-503
31C110/150/220
MOVITRAC ${ }^{\circledR} \ldots-233$
31C055/075

Fig. 26: Dimension drawing size 3

MOVITRAC ${ }^{\circledR}$...-503 31C300/370/450

Fig. 27: Dimension drawing size 4

1.6.2 Decentralized frequency inverter MOVITRAC ${ }^{\circledR}$ 31C

01314AEN
Fig. 28: Dimension drawing for the decentralized frequency inverter

1.6.3 Dimension size 0 with PROFIBUS-DP/InterBus

Fig. 29: Dimension drawing size 0 with the PROFIBUS-DP
The units with PROFIBUS-DP and InterBus have identical dimensions.

1.6.4 BW... braking resistors

00523AEN
Fig. 30: Dimension drawing for BW.. braking resistors

All dimensions in mm (in):

Braking resistor type	Design	Main dimensions			Mounting				Hole size	Weight
		W	H	D	a	b/b1	x 1	x2	c	[kg (lb)]
BW 200-003	Flat- pack design	110(4.33)	80(3.15)	15(0.59)	98(3.86)	60(2.36)	6(0.24)	10(0.39)	4 ea. threaded stand-offs, design 1 and 2	0.3(0.7)
BW 200-005		216(8.50)	80(3.15)	15 (0.59)	204 (8.03)	60 (2.36)				0.6(1.3)
BW 100-005										
BW 100-002	Wirewound resistor	$\begin{gathered} 286 \\ (11.26) \\ \hline \end{gathered}$	$\begin{gathered} 87 \\ (3.43) \end{gathered}$	$\begin{gathered} 75 \\ (2.95) \\ \hline \end{gathered}$	$\begin{gathered} 260 \\ (10.24) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 48 / 35 \\ (1.89 / 1.38) \\ \hline \end{array}$	10(0.39)	-	5.8(0.23)	0.8(1.8)
BW 100-006		486(19.13)	120(4.72)	92(3.62)	426(16.77)	64(2.52)				2.2(4.9)
BW 068-002		286(11.26)	87(3.43)	75(2.95)	260(10.24)	$\begin{gathered} 48 / 35 \\ (1.89 / 1.38) \end{gathered}$				0.8(1.8)
BW 068-004		386(15.20)	120(4.72)	92(3.62)	326(12.83)	64(2.52)				1.9(4.2)
BW 147		465(18.31)		185(7.28)	426(16.77)	150(5.91)				4.3(9.5)
BW 247		665(26.18)			626(24.65)					6.1(13.5)
BW 347		670(26.38)	145(5.71)	340(13.39)	630(24.80)	$300(11.81)$				13.2(29.1)
BW 039-003		286(11.26)	120(4.72)	92(3.62)	226(8.90)	64(2.52)				1.5(3.3)
BW 039-006		486(19.13)			426(16.77)	150(5.91)				2.2(4.9)
BW 039-012		486(19.13)		185(7.28)						4.3(9.5)
BW 039-026		586(23.07)		275(10.83)	530(20.87)	240(9.45)				7.5(20.9)
BW 027-006		486(19.13)		92(3.62)	426(16.77)	64(2.52)				2.2(4.9)
BW 027-012		486(19.13)		185(7.28)		150(5.91)				4.3(9.5)
BW 018-015		600(23.62)		92(3.62)	540(21.26)	64(2.52)				4.0(8.8)
BW 018-035	Steel grid resistor	295(11.61)	$260(10.24)$	490(19.29)	270(10.63)	$380(14.96)$	-	-	10.5(0.41)	9.0(19.8)
BW 018-075		595(23.43)			570(22.44)					21.0(46.3)
BW 915		795(31.30)			770(30.31)					26.0(57.3)
BW 012-025		295(11.61)			270(10.63)					9.0(19.8)
BW 012-050		395(15.55)			370(14.57)					12.0(26.5)
BW 012-100		595(23.43)			570(22.44)					21.0(46.3)

Touch guard for braking resistors (flat-pack type):

Touch guard	BSOO3	BSOO5
Part no.	8131511	$813152 X$
For braking resistors	BW 200-003/100-003	BW 200-005/100-005/047-005

00524AEN
Fig. 31: Dimension drawing for braking resistor touch guard

All dimensions in mm (in):

Touch guard	Main dimensions								
	W	H	\mathbf{D}	\mathbf{a}	$\mathbf{a 1}$	\mathbf{b}	$\mathbf{b 1}$	\mathbf{X}	Weight
	$[\mathbf{k g}(\mathbf{l b})]$								
BS003	$146(5.75)$	$160(6.30)$	$60(2.36)$	$125(4.92)$	$40(1.57)$	$20(0.78)$	$6(0.24)$	$17.5(0.69)$	$0.35(0.8)$
BS005	$252(9.92)$	$160(6.30)$	$60(2.36)$	$125(4.92)$	$40(1.57)$	$20(0.78)$	$6(0.24)$	$17.5(0.69)$	$0.5(1.1)$

For DIN rail mounting of the touch guard a DIN rail part no. 8221944 is available from SEW as an accessory component.

FKB01 heat sink for braking resistors in flat-pack design
(part no. 813099 X)

00668AEN
Fig. 32: FKB01 heat sink for braking resistors in flat-pack design

1.6.5 FNP 020-503 supply buffer module

00857AXX
Fig. 33: Dimension drawing for FNP 020-503 supply buffer module

1.6.6 NF...-.. input filters

01037AEN
Fig. 34: Dimension drawing for NF...-... input filters
All dimensions in mm (in):

Input filter	Main dimensions			Mounting		Hole size C	PEconnection	Weight [kg (lb)]
Type	W	H	D	a	b			
NF008-...	202 (7.95)	115 (4.53)	60 (2.36)	115 (4.53)	100 (3.94)	6.5 (0.26)	M6	1.7 (3.7)
NF016-...	222 (8.74)	150 (5.91)	65 (2.56)		135 (5.31)	6.4 (0.25)		3.0 (6.6)
NF025-...	250 (9.84)							3.0 (6.6)
NF036-...								3.2 (7.1)
NF050-...								3.2 (7.1)
NF080-...	427 (16.81)	170 (6.69)	90 (3.54)	375 (14.76)	130 (5.12)	6.5 (0.26)	M10	9.5 (20.9)
NF110-...	437 (17.20)							

1.6.7 EF...-503 EMC modules

00577BEN
Fig. 35: Dimension EF...-503
All dimensions in mm (in):

EMC module type	Main dimensions				Mounting			
W	Hole size	Weight [kg (lb)]						
EF014-503	$105(4.13)$	$230(9.06)$	$45(1.77)$	-	$175(6.89)$	-	$6(0.24)$	$0.9(1.98)$
EF030-503	$165(6.50)$	$285(11.22)$	$45(1.77)$	$142(5.59)$	$265(10.43)$	-	$7(0.28)$	$1.4(3.09)$
EF075-503	$170(6.69)$	$338(13.31)$	$51(2.01)$	$142(5.59)$	$265(10.63)$	-	$7(0.28)$	$2.1(4.63)$
EF220-503	$220(8.66)$	$464(18.27)$	$70(2.76)$	$142(5.59)$	$440(17.32)$	$387(15.24)$	$7(0.28)$	$13(28.67)$
EF450-503	$220(8.66)$	$614(24.17)$	$81(3.19)$	$142(5.59)$	$590(23.23)$	$537(21.14)$	$7(0.28)$	$24(52.92)$

1.6.8 ND...-013 line chokes

Fig. 36: Dimension drawing for ND...-013 line chokes

All dimensions in mm (in):

Line chokes	Main dimensions			Mounting		Hole size	Weight
type	W	H	D	a	b	c	[kg (Ib)]
ND020-013	$85(3.35)$	$120(4.72)$	$60(2.36)$	$50(1.97)$	$31(1.22)$	$5-10(0.20-0.39)$	$0.5(1.1)$
ND045-013	$125(4.92)$	$170(6.69)$	$95(3.74)$	$84(3.31)$	$55(2.17)$	$6(0.24)$	$2.5(5.5)$
ND085-013	$185(7.28)$	$235(9.25)$	$115(4.53)$	$136(5.35)$	$55(2.17)$	$7(0.28)$	$6.5(14.3)$
ND1503	$255(10.04)$	$230(9.06)$	$140(5.51)$	$170(6.69)$	$77(3.03)$	$8(0.31)$	$17(37.5)$

1.6.9 HD... output choke

00570BEN
Fig. 37: Dimension drawing for HD... output choke

All dimensions in mm (in):

Output choke	Main dimensions			Mounting		Inside \varnothing	Hole size
Type	W	H	D	a	b	d	C
HD001	121 (4.76)	64 (2.52)	131 (5.16)	80 (3.15)	50 (1.97)	50 (1.97)	5.8 (0.23)
HD002	66 (2.60)	49 (1.93)	73 (2.87)	44 (1.73)	38 (1.50)	23 (0.91)	
HB003	170 (6.69)	64 (2.52)	185 (7.28)	120 (4.72)	50 (1.97)	88 (3.46)	7.0 (0.28)

1.6.10 HF...-.. output filters

HF 015 / 022 / 030-503

HF 040 / 055 / 075-503

00527AEN

Fig. 38: Dimension drawing for HF...-503 output filters
HF...-403

In addition to standard mounting, HF 023-403, HF 033-403 and HF 047-403 can also be mounted horizontally (reduced depth). For this purpose the rear mounting rails must be rearranged. Mounting dimensions $a 1 / b 1$ and main dimension T1 then apply.

00528AEN
Fig. 39 : Dimension drawing for HF...-403 output filters
All dimensions in mm (in):

Output filter type	Main dimensions (Standard mounting)			Mounting (Stand. mount.)		Mounting (horizontal)		Hole size	Cooling clearance		
	W	H	D/D1	a	b	a1	b1	c	side	above	below
HF008-503	$\begin{gathered} 80 \\ (3.15) \end{gathered}$	$\begin{gathered} 286 \\ (11.26) \end{gathered}$	$\begin{gathered} 176 \\ (6.93) \end{gathered}$	-	$\begin{gathered} 265 \\ (10.43) \end{gathered}$	-	-	$\begin{gathered} 7 \\ (0.28) \end{gathered}$	-	$\begin{gathered} 100 \\ (3.94) \end{gathered}$	$\begin{gathered} 100 \\ (3.94) \end{gathered}$
HF015-503											
HF030-503											
HF040-503	$\begin{gathered} 135 \\ (5.31) \end{gathered}$	$\begin{gathered} 296 \\ (11.65) \end{gathered}$	$\begin{gathered} 216 \\ (8.50) \end{gathered}$	$\begin{gathered} 70 \\ (2.76) \end{gathered}$	$\begin{gathered} 283 \\ (11.14) \end{gathered}$						
HF055-503											
HF075-503											
HF023-403	145	284	365/390	268	60	$\begin{gathered} 210 \\ (8.27) \end{gathered}$	$\begin{gathered} 334 \\ (13.15) \end{gathered}$	$\begin{gathered} 6.5 \\ (0.26) \end{gathered}$	$\begin{gathered} 30 \mathrm{ea} \\ (1.18 \mathrm{ea}) \end{gathered}$	$\begin{gathered} 150 \\ (5.91) \end{gathered}$	$\begin{gathered} 150 \\ (5.91) \end{gathered}$
HF033-403	(5.71)	(11.18)	(14.37/15.35)	(10.55)	(2.36)						
HF047-403	$\begin{gathered} 190 \\ (7.48) \end{gathered}$	$\begin{gathered} 300 \\ (11.82) \\ \hline \end{gathered}$	$\begin{gathered} 385 / 400 \\ (15.16 / 15.57) \\ \hline \end{gathered}$	$\begin{gathered} 284 \\ (11.18) \\ \hline \end{gathered}$	$\begin{gathered} 80 \\ (3.15) \\ \hline \end{gathered}$						

1.7 Operating menu and parameter setting

The parameter menu is normally only required for commissioning and service.
The MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ basic unit is therefore designed without a keypad. It can be expanded by adding a communications option to suit individual application requirements.

The parameters for the MOVITRAC ${ }^{\circledR}$ 31C can be set by various methods:

- with the optional FBG 31C keypad (\rightarrow Sec. 1.5.8). This provides a convenient, easy-to-follow user menu, in addition to the comprehensive parameter menu.
- with a PC using MC_SHELL software (free of charge) from version $2.90(\rightarrow$ Sec. 1.8). In this case, MOVITRAC ${ }^{\circledR}$ 31C must be equipped with an interface:
- with option USS 11A (RS-232 serial interface)
- with option UST 11A (RS-485 serial interface)
- or with the RS-485 serial interface on the FEA 31C / FIO 31C (input/output expansion) options.

1.7.1 Menu structure and user menu

Fig. 40: Menu structure

MOVITRAC ${ }^{\circledR}$ 31C inverters with an FBG 31C keypad offer both a comprehensive parameter menu with all the parameters and an easy-to-follow user menu with the parameters which are most frequently needed. With the FBG 31B up to version .11 not all parameters are available. It is possible to change from one type of menu to the other in any operating state (with parameter P802 of user menu = yes). The factory setting for the menu type is the user menu, indicated by .../ in the display. The parameters which are available in the user menu are indicated by a $\mathbf{K} /$ in the complete parameter list.

User menu with the FBG 31C keypad
(Operation \rightarrow Sec. 1.5.8)

Fig. 41: FBG 31C User menu

1.7.2 Parameter list

Basic display

K/		Frequency	$\begin{gathered} 0 . .400 \mathrm{~Hz} \\ 0 . .200 \% \end{gathered}$
		Current	
0		DISPLAY VALUES	
00	-	Process values	
	0	Frequency	0 ... 400 Hz
	1	Temperature	$-20 \ldots+100^{\circ} \mathrm{C}$
	2	Active parameter set	\#1 / \#2
-	3	Ext. current limit TL. 36-37	7 0... 100 \%
	4	Speed 0	0 ... 9999 1/min
01 _		Voltages	
	0	$V_{\text {DC link }}$	0 ... 1000 V
	1	$V_{\text {motor }}$	0 ... 1000 V
		Frequency	0 ... 400 Hz
02 _		Currents / powers	
	0	I apparent	0 ... 200%
K/	1	Utilization	0 ... 125 \%
K/	2	Motor utilization 1	0 ... 200 \%
\bullet	3	Motor utilization 2	0 ... 200 \%
03	-	Status binary inputs	
K/	1	48: ... 49: ...	

```
Additionally with FEA/FIO: 50: ... 51: ... 0/1
    2
Additionally with FIO: 52: ... 53: ..54: ... 0/1
```

0	4	-
	Status binary outputs	
	61: ... $62: \ldots$	

Additionally with FEA/FIO: 63: ... 64: ... 0/1
3
Additionally with FIO: 69: ... 70: ... 71: ... 72:... 0/1

| $\mathbf{0}$ | $\mathbf{5}$ |
| :--- | :--- | :--- |
| - | $\mathbf{0} \quad$ Options |
| Option board X20 | |

 None/FEA/FFP/FFI/FES/FIO
 - 1 Option board X21
None/Option board 2/FEN/FPI
(Option board 2 = terminal block X14 or FIT)


```
Factory setting bold
K/ = user menu for FBG 31C
P.2 = 2nd parameter set
- = not available on size 0 MC }\mp@subsup{}{}{\circledR}31\textrm{C005/007/011/014
```


1 _ Setpoint n1 terminal $34 / 35$
K/ $0 \quad$ n2 Signal TL.34/35 $\quad \mathbf{0 . . 1 0 V} /-10 . .+10 \mathrm{~V}$ (Observe S1 setting!) $0 . .20 \mathrm{~mA} / 4 . .20 \mathrm{~mA}$
1 Setpoint n 2 offset -500 mV .. $0 .+500 \mathrm{mV}$

12	-	ramp generator	
K/	0	t11 Ramp up	0.0 .1 .1 .2000 s
K/	1	t11 Ramp down	$0.0 .1 . .2000 \mathrm{~s}$
	2	t11 S pattern	0/1/2/3
P. $2 \bullet$	3	t21 Ramp up	0.0 .1 .12000 s
P. $2 \bullet$	4	t21 Ramp down	$0.0 .1 . .2000 \mathrm{~s}$
P. 2 -	5	t21 S pattern	0/1/2/
13	-	2nd ramp generator	
K/	0	t12 Ramp up=down	0.0.5. 2000
P. 2 -	1	t22 Ramp up=down	0.0..5..200

14		Rapid stop ram	
K/	0	t13 Ramp Stop	0.0.1.1.0..9.95 s
P. 2 -	1	t23 Ramp Stop	0.0.1.0.0.9.95 s

Motorized potentiomenter			
		Motorized pot.	Yes/No
		t4 Ramp up	1..10.60 s
	2	t4 Ramp down	$1 . .10 .60 \mathrm{~s}$
		Save position	Yes/No
		MIX: Motorized pot. + n2	No/Sum
1	6	1st set of fixed setpoints	
K/		n11	0..5.. 400 Hz
K/		n 12	0.25 .400 Hz
K/		n 13	0.50 .400 Hz
	-	MIX 1st set $+\mathrm{n} 1 \quad \mathrm{~N}$	No/Sum/Product
1	7	2nd set fixed setpoints	
P. 2	0	n 21	0..5. 400 Hz
P. 2	1	n 22	0.25 .400 Hz
P. 2	2	n 23	$0.50 . .400 \mathrm{~Hz}$
P. 2	- 3	MIX 2nd set + ext. setpoint	No/Sum/Product

18 - Setpoint stop function

| 0 | Setpoint stop function 1 | Yes/No |
| :--- | :--- | ---: | ---: |
| 1 | Stop setpoint 1 | $0.2 . .25 \mathrm{~Hz}(\ldots \mathrm{mV})$ |
| 2 | Start hysteresis 1 | $0.1 . .2 .5 \mathrm{~Hz}(\ldots \mathrm{mV})$ |
| 3 | Setpoint stop function 2 | Yes/No |
| 4 | Stop setpoint 2 | $0 . .2 . .25 \mathrm{~Hz}(\ldots \mathrm{mV})$ |
| 5 | Start hysteresis 2 | $0.1 . .2 . .5 \mathrm{~Hz}(\ldots \mathrm{mV})$ |

19 - Terminal control word

- $\mathbf{0}$ Control word Standard/3-WIRE-CTRL

2		FREQUENCY CHARACTERISTICS	
20		V/f pattern 1 (stepped)	
K/	0	$f_{\text {min }} 1$	0...2... 40 Hz
K/	1	$\mathrm{f}_{\text {base }} 1$ stepped $\quad 50 / 60 /$	50/60/87/104/120 Hz
K/	2	$f_{\text {max }} 1$	5..50..150 Hz
21		V/f pattern 2 (stepped)	
P. 2 -	0	$\mathrm{f}_{\text {min }} 2$	0...2... 40 Hz
P. $2 \cdot$	1	$\mathrm{f}_{\text {base }} 2$ stepped $\quad 50 / 60 /$	50/60/87/104/120 Hz
P. 2 -	2	$\mathrm{f}_{\max } 2$	5..50.. 150 Hz
22		V/f pattern 3 (stepless)	
	0	$f_{\text {min }} 3$	0...2... 150 Hz
	1	$\mathrm{f}_{\text {base }} 3$ stepless	5..50.. 400 Hz
	2	$f_{\text {max }} 3$	5..50..400 Hz
23		1st frequency window skip	
-	0	1st frequency window skip	w skip Yes/No
-	1	Window centre	5..50..150 Hz
-	2	Window width (half width)	width) 2... 9 Hz
25		V/F pattern selection	
	0	V/f pattern parameter set 1	r set $1 \quad 1 / 3$
P. 2 -	1	V/f pattern parameter set 2	er set 2
26		START-/STOP frequency	ency
K/	0	Set 1 START/STOP freq.	freq. $\quad 0.2$..10.0 Hz
P. 2 -	1	Set 2 START/STOP freq.	freq. $\quad 0.2$..10.0 Hz

3		MOTOR PARAMETERS	
3	1	Manual adjustment 1/1	
	0	Motor rated current 1	20..90.. 200 \%
	1	PWM FIX	Yes/No
3	2	Manual adjustment 1	
K/	0	$I_{\max } 1$	20.150 \%
K/	1	BOOST 1	0.. 200 \%
K/	2	IxR 1	0.. 200 \%
K/	3	Slip 1	$0 . .10 \mathrm{~Hz}$
	4	Pole pair number 1	1/2/3/4/5/6
K/	5	PWM frequency 1	4/8/12/16 kHz
K/	6	Premagnet. time 1	$0 . .100 . .300 \mathrm{~ms}$
	7	Postmagnet. time 1	$0 . .100 . .300 \mathrm{~ms}$
K/	8	Motor size-up 1	Yes/No
K/	9	Motor voltage 1	200...400... 600 V
3	3	Manual adjustment 2/1	
P. 2	- 0	Motor rated current 2	20..90.. 200 \%
P2	- 1	PWM FIX	Yes/No
3	4	Manual adjustment 2	
P. 2	- 0	$I_{\max } 2$	20.150 \%
P. 2	1	B00ST 2	$0 . .200$ \%
P. 2	2	IxR 2	$0 . .200$ \%
P. 2	3	Slip 2	$0 . .10 \mathrm{~Hz}$
P. 2	4	Pole pair number 2	1/2/3/4/5/6
P. 2	5	PWM frequency 2	4/8/12/16 kHz
P. 2	6	Premagnet. time 2	$0 . .100 . .300 \mathrm{~ms}$
P. 2	- 7	Postmagnet. time 2	$0.100 . .300 \mathrm{~ms}$
P. 2	- 8	Motor size-up 2	Yes/No
P. 2	- 9	Motor voltage 2	200...400... 600 V
3	5	Parameter switch over	
	- 0	Enable parameters switch	over Yes/No

1 - 2nd frequency reference value

- $\overline{0}$ 2nd frequency reference $2 . .50 . .150 \mathrm{~Hz}$
- 1 2nd hysteresis
1..2.9 Hz
- 2 2nd delay
$0 . .9 \mathrm{~s}$ - REFERENCE VALUES
$\overline{0}$ 1st frequency reference $\quad 2 . .50 . .150 \mathrm{~Hz}$
1 1st hysteresis $\quad 1 . .2 . .9 \mathrm{~Hz}$
2 1st delay 0... 9 s
3 1st signal $=1$ at $\quad \mathrm{f}>\mathrm{f}_{\mathrm{ref}} 1 / \mathrm{f}<\mathrm{f}_{\mathrm{ref}} 1$
-

63 - Analog outputs 38/39/65
Additionally with FEA:

- 0 Analog output 1 (TL.38) actual frequency
- 2 Analog output 2 (TL.39) apparent curren
- 3 Factor output 2
0.01..1..3.0

Basic unit:
Meas. output (TL.65) actual frequency

1.7.3 Parameter descriptions

The function is available in parameter sets 1 and 2

Parameter Group 000

DISPLAY VALUES
This menu section contains information about values measured inside the unit (utilization / currents / voltages / frequencies) as well as the status of the binary inputs and outputs.

P004

Speed

In V/f mode without speed controller: the indicated speed is rounded off (up or down) to a full number of revolutions. It is derived from the number of pole pairs (P324/344) and the output frequency ($\Delta \mathrm{f} 0.05 \mathrm{~Hz}$).
With speed controller: derived from the encoder signals (= actual value);
Accuracy with FBG 31C: $\pm 1 \mathrm{rpm} /$ with MC_SHELL: $\pm 0.5 \mathrm{rpm}$
P010...P011
Voltages
For the displayed voltages $\mathrm{V}_{\text {DC link }} / V_{\text {motor }}$ a tolerance range of $\pm 10 \%$ applies.

P020

Apparent current

Displays the apparent current $I_{\text {apparent }}$, range $0 . .200 \% I_{N}$.

P021

Utilization
Displays the utilization of the inverter, range $0 . .125 \% I_{N}$.
The MOVITRAC ${ }^{\circledR}$ 31C frequency inverter can be operated at a continuous output of up to $125 \% I_{N}$. This overload capability is based on the following information:

- the factory set PWM frequency $=4 \mathrm{kHz}($ P325/P345)
- and ambient temperature $\leq 45^{\circ}$.

With higher PWM frequencies (8,12 , or 16 kHz) the time for which the overload rating applies is limited. It is then still possible to operate the units at $I_{\max }$, however the permissible continuous current is reduced. The MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ adjusts the PWM frequency to the overload conditions and automatically reduces the PWM frequency when a high utilization factor is reached.
The Ixt monitoring calculates the thermal utilization of the unit as a function of:
PWM frequency, output current, heat sink temperature and input voltage.
When an Ixt value of 126% is reached, the unit trips on "Continuous overload" and switches off. The following diagram illustrates the time response of the available output currents at the maximum permissible ambient temperature $\left(=45^{\circ} \mathrm{C}\right)$.

Size 0: $T=6.0 \mathrm{~min}$
Size 1: $T=10 \mathrm{~min}$
Size 2: $T=2.5 \mathrm{~min}$

Size 3: $T=3.0 \mathrm{~min}$
Size 4: $T=3.0 \mathrm{~min}$

Fig. 42: Reduction of PWM frequency in the event of overload

Without output frequencies $\leq 2 \mathrm{~Hz}$ the available output currents are reduced.
Guaranteed continuous current dependent on the output frequency

Fig. 43: Continuous output currents

P022/P023

Motor utilisation

\rightarrow Parameter description P54_ motor monitor.

P030/P040

Status binary inputs / outputs

For details please refer to the terminal assignment tables for the binary inputs/outputs (P60_/61_).

P060...P064
 Fault memory

Readout memory for the last 5 fault events.

Parameter group 100 SETPOINT / RAMP GENERATORS

P10

Setpoint $\mathbf{n 1}$

(Only with option FEA 31C)
The analog setpoint n 1 terminals TL. $32(+) / \mathrm{TL} .33(-/ 0 \mathrm{~V})$ is factory-set at $0 . .10 \mathrm{~V} \xlongequal{\wedge} 0 \ldots \mathrm{f}_{\max }(\mathrm{P} 202 /$ 212/222) (resolution: 10 bit). P101/102 allows this setpoint to be referenced to a section of the frequency range set in parameter group 200. Depending on the set $f_{\text {max }}$, the basic frequency can be set alternatively to correspond to the setpoint " 10 V " (by setpoint gain) or to the setpoint " 0 V " (by setpoint offset):

Setpoint gain P101: (气 override value 10..100..1000 \%)

$$
\begin{array}{ll}
\text { Setpoint } & \\
\text { Factor } v 1: & 0 . .10 \mathrm{~V} \triangleq 0 \ldots \mathrm{v} 1 \bullet \mathrm{f}_{\max } \\
\mathrm{v} 1=10.0 .10 .0 \text { in steps } \Delta \mathrm{v} 1=0.1 \\
\mathrm{v} 1=1 & \Rightarrow \\
& \text { setpoint input } \mathrm{n} 1 \text { uses } 0 \ldots .1 \mathrm{~V} \\
\mathrm{v} 1=0.1 & \text { setpoint input } \mathrm{n} 1 \text { uses } 0 . .10 \mathrm{~V} \\
& \Rightarrow \text { produces } \Delta \mathrm{f}=10 \% \mathrm{f}_{\max } \\
& \text { (used e.g. as corrective setpoint) }
\end{array}
$$

Setpoint offset P102: (^ offset value $0 . . .10 \%$)

$$
\begin{array}{ll}
\text { Setpoint } & 0 \ldots . .10 \mathrm{~V}=(1-\mathrm{v} 2) \bullet \mathrm{f}_{\max } \ldots \mathrm{f}_{\max } \\
\text { Factor v2: } & 0.1 \ldots 9.0 \text { in steps } \Delta \mathrm{v} 2=0.1
\end{array}
$$

If $(1-\mathrm{v} 2) \bullet \mathrm{f}_{\text {max }}>\mathrm{f}_{\text {min }}$,
the $f_{\text {min }}$ value becomes ineffective.

P11_

Setpoint n2

The analog setpoint n2 at TL. $34(+) / 35(-/ O V)$ can be set up for 4 signal modes (resolution: 9 bit). This parameter cannot be changed while the inverter is enabled.

Switch S1 in position	Selectable via P110	Comments (References to terminals are based on the factory setting)
"U" Voltage	0... 10V	Standard setting for setpoint n2
	-10...+10V	- Setpoint n2 determines the output frequency and the direction of rotation ($+\wedge \mathrm{CW} /-\wedge \mathrm{CCW}$). Effective from $\geq 100 \mathrm{mV}$. - The enable is via TL. 43 and the CW or CCW commands. - The binary commands CW / CCW via TL.41/42 are ignored as commands for the direction of rotation. - "0" on TL. 43 effects "Rapid stop" down the rapid stop ramp t3 (P140) - "0" on TL.41/42 effects "STOP", i.e. ramp-down the deceleration ramp t11/t21 (P120) or t12/22 (P130).
"I" Current	0... 20 mA	Input impedance $\mathrm{R}_{i}=250 \Omega$ i.e. a maximum of 2 inverter
	4... 20 mA	"Zero live"-signal setpoint inputs can be included in the setpoint loop

The setpoint n 2 can be mixed with

- the external setpoint n1 (only with FEA 31C), i.e. both setpoints are added together. For $\mathrm{n} 2=-10 \ldots 0 \ldots+10 \mathrm{~V}$ the sign of n 2 determines the direction of rotation; the absolute values of the effective setpoints are added, e.g.: n2 $=-3 \mathrm{~V} / \mathrm{n} 1=+5 \mathrm{~V} \rightarrow$ counterclockwise rotation with a setpoint $=8 \mathrm{~V}$.
- the motorized potentiometer (P15_). Both values are added together. With n2 $=-10 \ldots 0 . . .+10 \mathrm{~V}$ the motorized potentiometer determines the direction of rotation; negative setpoints are ignored.
The internal fixed setpoint $n 11 / n 12 / n 13$ (P160/P170) can still be used. When fixed setpoints are selected, the direction of rotation of the motor is set via the CW/Stop and CCW/Stop binary inputs.

Holding an analog setpoint

With this function, an analog setpoint n2 on TL. 34/35 of the basic unit can be held and an applied setpoint stored even after the setpoint has been removed. To do this, a terminal signal must be wired to a binary input. The mode of analog setpoint n2 TL. 34/35: $0 \ldots+10 \mathrm{~V} /-10 \mathrm{~V} ; 0 \ldots 20 \mathrm{~mA} /$ $4 . . .20 \mathrm{~mA}$ remains unchanged and n 2 continues to be added to the external setpoint n 1 .
This function is active, if a binary input P60_ is programmed to the function "setpoint active".

Signal "1" means:

The setpoint present on TL. 34/35 is read and is effective.

Signal "0" means:

Setpoint changes on TL. 34/35 are not effective. After the 1/0 transition the setpoint last read remains in effect. However, this setpoint is not stored to EEPROM, so it is no longer effective when the unit is powered down and then powered up again. When 24 V back-up mode is active, the setpoint remains stored, i.e. after the unit has been inhibited (no enable) and then enabled again, the inverter will run up to the value last read. If the inverter is powered up for the first time and "setpoint active" $=$ " 0 ", it will run with $\mathrm{f}_{\text {min }}\left(\right.$ given that $\mathrm{f}_{\text {start-stop }}<\mathrm{f}_{\text {min }}<\mathrm{f}_{\max }$).
For correct reading of the setpoint the binary input must be set for minimum 20 ms and the setpoint signal must be stable until the input goes low (1/0).

Compensation of offset:

The offset of the setpoint input for setpoint n2 can be compensated so as to obtain a high speed accuracy even at low speeds (i.e. for speed control with higher-level control systems). For this purpose a setpoint offset between -500 mV and +500 mV can be set in P111.

Setting instructions:

Fig. 45: Drift compensation for n2 00532AEN

The following priorities apply for the speed setpoint processing of the MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$:

Processing priority in inverter	Setpoint source	
highest priority	Internal fixed setpoints	
	Motor potentiometer	
lowest priority	Fieldbus setpoint	
	Analog setpoint (unipolar)	
$\mathbf{P 1 2}$		12

The main ramp generator t11 / t21 enables the acceleration time (ramp up: P120 for the first parameter set and P123 for the second parameter set) and the deceleration time (ramp down: P121 for the first parameter set and P124 for the second parameter set) to be set separately for each parameter set. The set time always refers to $\Delta f=50 \mathrm{~Hz}$; for greater frequency changes the time increases accordingly.

The S pattern function can be activated in three stages (values $1 / 2 / 3$).
The S pattern effects a smooth unit response to setpoint changes, e.g. on start-up.

A " 1 " signal on an appropriately assigned binary input (P60_) effects a changeover from the 1st ramp generator $\mathrm{t} 11 / \mathrm{t} 21$ to the second ramp generator $\mathrm{t} 12 / \mathrm{t} 22$. This ramp generator sets the acceleration and deceleration times to the same value: ramp up = ramp down.

P14_

Rapid stop ramp

The rapid stop ramp t12/t23 becomes effective if the enable command (factory setting TL. 43 = " 0 ") is removed. The set time refers to $\Delta \mathrm{f}=50 \mathrm{~Hz}$.

Note: All ramp generators are influenced by an internal control circuit when the output current is in the current limit range. For correct positioning travel at creep speed is necessary.

P15

Motorized potentiometer

The internal motorized potentiometer function can only be activated with P150 = "Yes". This parameter cannot be changed while the inverter is enabled. It remains activated after power-down and subsequent power-up.
Two of the binary inputs (P60_) must be assigned to the functions "Motorized pot up" and "Motorized pot down".
The potentiometer setpoint can be MIXed (P154 = "Yes") with the external setpoint n2 (P11_), in this case the two values are added. If $\mathrm{n} 2=-10 \ldots+10 \mathrm{~V}$, then the motorized potentiometer specifies the direction of rotation; negative setpoints are ignored.
The internal fixed setpoints can be selected, the main ramp generator is active in each case.
The motorized potentiometer setpoint which was last used can be stored (P153 = "Yes") and thus remains effective after a fixed setpoint has been activated and also after a STOP, rapid stop or power-down operation.
For the start-stop-frequency ... $\mathrm{f}_{\text {min }}$ the currently active ramp generator is effective.
To deactivate the motorized potentiometer function, set P150 = "No"; the motorized potentiometer setpoint is then set back to $\mathrm{f}_{\text {min }}$.

P16_
P17

Internal fixed setpoints

The freely assignable binary inputs (P60_) are used to determine which setpoint is to be active.
Example of terminal assignments:
TL. 48: n11 (n21) / TL. 49: n12 (n22) / TL. 48+49: n13 (n23)
The parameter set selection provides two sets with 3 internal fixed setpoints each.
Fixed setpoint selection is also possible with a binary input, programmed to "fixed setpoint selection". When the binary input is activated, the fixed setpoints of the currently inactive parameter set become available. Unlike V/f pattern selection (P25_) and parameter set selection (P350), fixed setpoint selection is possible whether the inverter is enabled or not enabled.

The internal fixed setpoints cannot be selected if setpoint n2 (P110) is programmed to -10 ...+ 10 V .
The relationship between the internal fixed setpoints $n 11 / n 12 / n 13$ or $\mathrm{n} 21 / \mathrm{n} 22 / \mathrm{n} 23$ and the external setpoint n 1 (only with FEA 31C: P100; including gain/offset) is determined by P163/173 "Mix with n1":
"No" fixed setpoints have priority over setpoint n1
$\mathrm{n} 1=$ inactive
"Sum" setpoint n 1 is added to each fixed setpoint
"Product" the fixed setpoints are multiplied by n1
$\mathrm{n} 1=$ offset
$\mathrm{n} 1: 0 . . .10 \mathrm{~V}=$ scale factor $0 . .1$

P18_
Setpoint stop function
When the setpoint stop function is activated it takes over the function of the enable command.
The input signals "Enable" TL. 43 and "Direction of rotation" TL. 41 or TL. 42 are necessary for operational readiness of the unit, they may always remain at level " 1 ". The value of the setpoint then determines any starting or stopping operations of the drive.
When starting or stopping, the main ramp generators (P11_/P12_) are active, not the rapid stop ramp (P13_). As soon as the setpoint has dropped below the stop setpoint setting (P181/184), a STOP is initiated, the enable is removed and the brake is applied (TL. $61=$ " 0 ").

Conversely, the unit is enabled through an increase in the setpoint only when the stop setpoint value plus the set start hysteresis (P183/185) is reached.
The stop setpoint applies to analog external setpoints as well as to the internal fixed setpoints, which are selected via the binary inputs; it is specified in Hz and automatically also indicated in mV . The indication in mV is only valid if neither setpoint gain (P101) nor setpoint offset (P102) is active.

The lower frequency limits $f_{\text {min }}$
(P200/210/220) and the start-stop frequency (P260/261) are still effective.

Exception:
$\mathrm{f}_{\text {min }}$ (P200/210/220)< (stop setpoint +
start hysteresis)
\rightarrow the drive does not remain at $f_{\text {min }}$,
but at the stop setpoint plus start hysteresis.

Fig. 47: Setpoint stop function
00534AEN

P19
Terminal setpoint
(only FEA31C or FIO31C option)
The parameter P190 can be used to switch from STANDARD to 3-WIRE-CTRL. The enable and rotation signal of the inverter are then edge-controlled.

- Connect CW start switch with the NO contact to the "CW/Stop" binary input.
- Connect CCW start switch with the NO contact to the "CCW/Stop" binary input.
- Connect the stop switch with the NC contact to the "Enable/Rapid stop".

Fig. 48: 3-WIRE-CTRL
The "3-WIRE-CTRL" function cannot be selected in the P841 "Control mode = Remote-CTRL" setting.

V/f characteristic curves 1 and 2

Voltage/frequency characteristic curves 1 and 2 with adjustable $f_{\text {min }}, f_{\text {base }}$ and $f_{\text {max }} ; f_{\text {base }}$ can be selected in steps ($50 / 60 / 87 / 104 / 120 \mathrm{~Hz}$). The inverter must be disabled for selection. If the speed control (P770 = Yes) is active, $f_{\text {max }}(P 202)$ is limited to 120 Hz . In V/f mode $\mathrm{f}_{\max }$ can be set to max. 150 Hz . The parameter set selection feature allows you to switch between two V/f characteristic curves, which can be selected via P250/251. The inverter must be inhibited when switching to another V/f characteristic curves.
$\mathrm{f}_{\text {min }}(\mathrm{P} 200 / 210 / 220)$ is ineffective when the start/stop frequency (P260/261) is set $>\mathrm{f}_{\text {min }}$.

00535AEN
Fig. 49: Frequency characteristics

The choice of the V/f characteristic curves for the frequency inverter has a decisive influence on the motor torque and power characteristics. V/f characteristic curves with a base frequency (rated frequency \rightarrow Pg. 56) have the following effects with increasing speed:

- up to the base frequency, the motor has constant torque and increasing power= basic (armature) control range
- above the base frequency, the motor has constant power and the torque decreases inverse proportionally= field weakening range
The frequency range above the base frequency is the constant voltage range, where the breakdown torque $\left(\mathrm{M}_{\text {breakdown }} \approx 2.4 \ldots 3 \mathrm{X} \mathrm{M} \mathrm{M}_{N}\right)$ decreases as a square with increasing frequency.
This means that with $\mathrm{f}_{\text {base }}=50 \mathrm{~Hz}$ there are no overload reserves available above about 90 Hz because of the danger of the motor stalling.

P22

Special V/f characteristic curves 3

Special V/f characteristic curves 3 with $\mathrm{f}_{\min }=0 \ldots 150 \mathrm{~Hz}, \mathrm{f}_{\max }=5 \ldots 400 \mathrm{~Hz}$ and continuously adjustable $\mathrm{f}_{\text {base }}=5 \ldots 400 \mathrm{~Hz}$.
The setting: $\mathrm{f}_{\text {base }}<50 \mathrm{~Hz}$ is only to be used for special applications, where the motor is matched to its permissible V/f characteristic curve by using a special transformer (for $\mathrm{f}_{\mathrm{N}}<50 \mathrm{~Hz}$).

P23

Frequency window skip

The window skip serves to suppress undesired output frequencies (to avoid resonant frequencies in the system). The output frequency will go through the range which is set, but will not stay there. Only when the setpoint exceeds, or falls below, the upper window limit, the output frequency will move through the window in accordance with the selected ramp generators $\mathrm{t} 11 / \mathrm{t} 21$ or $\mathrm{t} 12 / \mathrm{t} 22$.

- With an increasing setpoint, the output frequency remains at the lower window value which is set until the setpoint reaches the upper limit of the window.
\Rightarrow the output frequency then rises to the upper frequency window value.
- With a decreasing setpoint, the output frequency remains at the upper window value until the setpoint has dropped below the lower limit of the window, and then drops to the lower window value.

Fig. 50: Frequency window skip
00536AEN
The window skip can be programmed as a signal to one of the binary outputs (P61_).

P25

V/f characteristic curve selection
The applicable V/f characteristic curve 1, 2 or 3 (P200/210/220) can be selected for both parameter sets. For characteristic curve selection the inverter must be not enabled. For the first parameter set V/f characteristic curve 1 or 3 can be activated, for the second set V/f characteristic curves 2 or 3 (See also P350 Parameter set selection).

P26

Start/Stop frequency

The deceleration ramps, i.e. STOP and rapid stop, are only effective down to the start/stop frequency. If the actual frequency falls below the start/stop frequency, the inverter will immediately stop the drive, i.e. the output voltage $\mathrm{V}_{\text {outp }}=$ " 0 " and the binary output TL. 61 "Brake" $=$ " 0 ". This means that below the start/stop frequency the rotating field stops immediately, and the brake is applied. If the actual frequency increases beyond the start/stop frequency, the inverter is enabled again.
If the start/stop frequency $<\mathrm{f}_{\text {min }}$ (P200/210/220), then the active ramp generator is effective between $f_{\text {min }}$ and the start/stop frequency. If the start/stop frequency $>\mathrm{f}_{\text {min }}(\mathrm{P} 200 / 210 / 220)$ then $\mathrm{f}_{\text {min }}$ is ineffective.

Switch-off response \rightarrow P18_ setpoint stop function.
When the parameter set selection feature is used, a second start/stop (P261) frequency can be selected for the second V / f characteristic curve.

Setting recommendations:

for travel drives: $\quad \mathrm{P} 260$ / P261 $=0.5 \mathrm{~F} . .3 \mathrm{~Hz}$
for hoists: \quad P260 / P261 $=2 . . .10 \mathrm{~Hz}$ (frequency equals 1.5 times the rated motor slip)

This parameter group serves to adjust the inverter to the motor which it controls, or to two motors, when the parameter switchover is used. Parameters P31 and P32_ refer to parameter set 1, i.e. the first motor. Parameters P33 and P34_ refer to parameter set 2, i.e. the second motor.

P310 / P330

Manual adjustment

The motor rated current for the "thermal motor protection" function is set with P310/P330. The setting range is the motor rated current, $20 . .200 \%$ of the inverter rated current, 90% being the factory setting (\rightarrow P54_ Motor monitoring). Together with P54_ this value is used for the motor monitoring function.

P311 / P331

PWM FIX
With PWM FIX $=0 \mathrm{~N}$, the automatic reduction of the PWM frequency is switched off.
P320 / P340

Current limit

The internal current limit $I_{\max }$ is related to the apparent current. It has priority over the external current limit (option FEA 31..., TL. 36/37), i.e. it sets the limits within which the external current limit can operate. The value of the current limit is reduced down to a minimum in the field weakening range, to prevent the danger of the motor stalling in this range.

Fig. 51: Current limit

Increases the output voltage in the frequency range below the base frequency to increase the starting torque.

The setting range of the Boost is $0 . . .200 \%$. 100% Boost ≈ 70 V with MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$...-503
$\approx 40 \mathrm{~V}$ with MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$...-233
(See also P 329/349 Motor voltage)

Fig. 52: Function of Boost
00538AEN

If Boost (P321/P341) and IxR (P322/P342) are both set, only the higher of the two set values will be effective. This means as a rule: in no-load conditions \rightarrow Boost / under load \rightarrow IxR. If the function P328/ P348 "Motor size-up" is activated, the inverter will set Boost and IxR automatically at each enable; the values stored in the parameters may change with each enable.

P322 / P342

|xt

Load-dependent change of the V/f pattern.
At the rated torque, i.e. at full load, the apparent current has a value of approx. 100%. At the rated frequency (= base frequency) the drive receives the maximum output voltage.
(See also P329/349 Motor voltage).

00539AEN
Fig. 53: Function of IxR

For lxR = 100% the voltage boost below the base frequency
is approx. 70 V for MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$...-503
is approx. 40 V for MOVITRAC ${ }^{\circledR} 31 \mathrm{C} . . .-233$.

Note:

If IxR is set too large there is a danger that the inverter will reach the current limit when at load, and the output frequency will stay at about $f_{\text {min }}$.

The rated slip frequency of the connected motor which is matched to the inverter, $\left(I_{\mathrm{N}}\right.$ motor $\left.=I_{\mathrm{N} \text { inverter }}\right)$ is entered here:

To ensure high torque also at low output frequencies, it is necessary to set the slip value.

Different settings for:

- motors with rated power P_{N} is not fully used (e.g. if oversized for continuous duty at low speed): The slip setting should be reduced, compared to the motor's rated slip s_{N}, in the ratio of partial power to rated power.
- motors which are smaller than the inverter that supplies them (e.g. for parameter set and motor selection: $P_{\text {inverter }}=3 \mathrm{~kW}$ or $4 \mathrm{hp}, \mathrm{P}_{\text {motor }}=1.5 \mathrm{~kW}$ or 2 hp$)$: The value given in the table must be increased in the ratio $\mathrm{P}_{\text {inverter }} / \mathrm{P}_{\text {motor }}$.
P323/343 causes a load-dependent change of the output frequency. The output frequency is increased (motor mode) by the set value ($0 \ldots 10 \mathrm{~Hz}$ - at $100 \% \mathrm{l}_{\text {app }}$) or reduced (regenerative mode); the compensation is only effective in the region above $40 \% I_{\mathrm{N}}$. The slip compensation reacts to changes in torque and thus adjusts to changing load conditions. This provides a speed, which is largely load-independent, i.e. the slip of an induction motor is compensated for.

P324 / P344
Pole pair number
Here the pole pair number of the connected motor (or motors) is to be entered (e.g.: 4-pole motor: "2"). This parameter cannot be changed while the inverter is enabled.

P325 / P345
PWM frequency
The PWM frequency can be increased to reduce noise. At heavy load the inverter automatically reduces the PWM frequency. All the power data for the MOVITRAC®31C refer to operation with the factory setting of 4 kHz . At higher PWM frequencies the data on utilization apply (P021). The wiring of an output filter is influenced by the selected PWM-frequency.

P326 / P346
Premagnetization time
P327 / P347
Postmagnetization time
The preset premagnetization time is effective after every enable and produces better starting conditions. The postmagnetization time supports the braking after deceleration. This parameter cannot be changed while the inverter is enabled.
If the premagnetization time is set < 100 ms , it will automatically be set to 100 ms by the "Motor size-up" function (P328 / P348 = "Yes").

This function is only usable for single motor operation with a matched motor, i.e. motor power = inverter power or 1 size larger or smaller.
With "Motor size-up" = "Yes" (factory setting) the inverter will automatically set and store the parameters "Boost" (P321/P341) and "IxR" (P322/P342) at each enable. In doing so, the inverter calculates a basic setting which is adequate for many drive tasks. In order to size the motor the function requires a premagnetization time (P326/P327) of at least 100 ms . If P326/P346 are smaller, they will automatically be set to 100 ms .
This can serve as a one-time adjustment aid to establish the Boost and IxR compensation. To increase the breakaway torque it is necessary to increase the Boost parameter (P321/341) further. Switching off the function "Motor size-up" = "no" stores the values in EEPROM, but they can then be altered by manual adjustments. "Motor size-up" can also be left active, Boost and IxR will then be adjusted to the current drive situation (e.g. motor warmed up) at each single enable. This parameter cannot be activated while the rapid start function (P720) is active. If speed control (P770) is active, then this function has no effect; Boost and IxR can be set here via SxR adjustment. This parameter can only be changed while the inverter is not enabled.

P329 / P349

Motor voltage

The voltage for which the motor is wound is shown on the motor nameplate.
The motor voltage determines the maximum output voltage which is reached at $\mathrm{f}_{\text {base }}$ (P201/211/221). This determines the gradient of the V / f pattern. If the set motor voltage exceeds the input voltage, then the output voltage is limited to the input voltage, however the slope remains fixed by the set motor voltage.

P350

Parameter switchover

This function allows one inverter to control two separate motors, using different drive parameter sets for each. The two motors can then alternately perform different drive tasks. This parameter can only be changed while the inverter is not enabled.
If the parameter switchover (P350 = "Yes") is activated and the inverter is not enabled then the binary input TL. 50 (factory-setting) can be used to switch from set 1 to set 2 . The parameters covered by this function are identified in the complete parameter list \rightarrow Sec. 1.7.2.
One of the programmable binary outputs (P61_) should be assigned to the signal "Parameter set 2/1". If that is not possible, status indication P002 may be used to establish which parameter set is currently active (see also P_25 V/f pattern selection).

The following reference values are used to identify and signal certain operating conditions. All signals of parameter group 400 are indicated through the binary outputs (P61_) (see parameter group 600).

P40_

Frequency reference values

Two frequency reference values can be set, which generate a "1" signal on one of the freely assignable binary outputs (P61_) if higher or lower frequency values are identified. The signal is only generated when the value exceeds, or falls below, a set tolerance range:
Hysteresis: Tolerance range = deviation from reference value [Hz]
Delay time: Permissible time for which the tolerance value may be exceeded [s]
Both reference values together can further be used for a window signal; the signal can optionally be generated if within or outside the two reference values.

P43_
 Setpoint/actual value comparison

The setpoint/actual value comparison is used to monitor and signal (P61_) any deviations, which are caused by acceleration conditions or overload. When "Speed control" is active ($\mathrm{P} 770=\mathrm{Yes}$), the setpoint is compared to the actual value measured at the motor.

P45
 P46_

1st current reference value
2nd current reference value
Two current reference values can be set as \% values of the rated current, which generate a " 1 " signal on one of the freely assignable binary outputs (P61_) if higher or lower current values are identified. These values serve to signal load conditions.
The signal is only generated when the value exceeds, or falls below, a set tolerance range:
Hysteresis: Tolerance range = deviation from reference value [Hz]
Delay time: Permissible time for which the tolerance value may be exceeded [s]

P47_

$I_{\text {max }}$ signal
If the value at the drive exceeds or, alternatively, reaches the set current $I_{\text {max }}$ (P320/P340), a signal (P61_) can be output. For values $>I_{N}$ this condition is only permissible for a short period of time, i.e. in practice this signal can be used to initiate a motor load reduction. This signal is not suitable for monitoring whether the motor frequency deviates from the setpoint value; $\mathrm{P} 430 / 431$ is used for this purpose.

Parameter group 500

MONITORING FUNCTIONS

The following monitoring functions are used to monitor certain important operating conditions.

P50_
 Deceleration monitoring

Can only be activated when the inverter is not enabled. In braking or deceleration phases this function monitors whether the output frequency $f_{\text {outp }}$ has fallen below the set reference value $\mathrm{f}_{\text {ref }} 3$ at the time of monitoring (i.e. signal level "0" on a correspondingly assigned binary input (P60_)). If foutp $>\mathrm{f}_{\text {ref }} 3$, the signal level on a correspondingly programmed binary output goes low ($1 / 0$). This transition can further be used to activate a binary input set up for "External fault" (P60_), i.e. trigger a fault signal.
A comparison of the present values of $f_{\text {outp }}$ and $f_{\text {ref }} 3$ is performed:

- at a certain point of an unchanging braking distance (distance-controlled)

รURODRIVE

Can only be activated when the inverter is not enabled. The motor mode overload monitoring function outputs the fault signal "MOT. OVERLOAD" if the output frequency $f_{\text {outp }}<f_{\text {setp }}$. In the motor mode this condition can be caused by operation at the current limit (as a result of acceleration or overload). Another cause can be input undervoltage at higher speeds. Operation at the $I_{\text {max }}$ limit can be tolerated for a short time by setting a response time ($0.1 \ldots 9 \mathrm{~s}$). The function can be activated separately for both parameter sets via parameter switchover. Also effective with incorrect encoder ppr setting (P773).

P52
Regenerative speed monitoring
Can only be activated when the inverter is not enabled. The regenerative overload monitoring function outputs the fault signal "REGEN. OVERLOAD" if the output frequency $f_{\text {outp }}>f_{\text {setp. }}$. In the regenerative mode this condition can be caused by overload, i.e. operation at the current limit. Operation at the $I_{\max }$ limit can be tolerated for a short time by setting a response time ($0.1 . . .9 \mathrm{~s}$). The function can be activated separately for each parameter set with parameter switchover. Also effective with incorrect encoder ppr setting (P773).

P53

Input voltage monitoring

The input voltage monitoring function monitors the DC link voltage $\mathrm{V}_{\text {DC link }}$, and produces the fault signal "Phase failure" when in motor mode. If the DC link voltage periodically dips below 250 V , this will result in a fault signal after approximately 150 ms . The input voltage monitoring can be programmed as a signal to one of the freely assignable binary outputs (P61_).

Motor monitoring

To protect the motor from overheating, the inverter can perform an estimate calculation of the temperature of the motor winding. It is assumed that the thermal rating of the motors relates to the rated values. Furthermore, a maximum ambient temperature of $\vartheta_{\text {amb }}=40^{\circ} \mathrm{C}$ and a maximum installation altitude of $1,000 \mathrm{~m}(3300 \mathrm{ft})$ above mean sea level are also assumed.
To recreate the power losses, the motor rated current must be specified in \% of the inverter rated current (P310/P330). The motor monitoring feature is activated in P541/543. It will issue a warning if the relevant motor utilization of 100% is exceeded. If a utilization of 110% is reached, the motor is switched off in combination with rapid stop, depending on the setting of P541/543 (Motor protection $1 / 2$). Parameter $542 / 544$ takes account of the motor's type of cooling.
In the case of motors with blower cooling, the monitoring function monitors the set motor rated current constant over the entire frequency range. For fan-cooled motors, the rated torque and thus the motor rated current can only be drawn for a short period below the rated speed. The output frequency 50 Hz is normally defined as the base point.

Fig. 55: Functioning of the "Motor monitoring" feature

The function applies to both parameter sets. For the non-active parameter set it is assumed that the relevant motor is switched off and cooling down.
The motor monitoring function works as long as the inverter's control electronics are operational, i.e. also in 24 V back-up mode and the supply power switched off. The utilization values are lost when the power is completely disconnected.
The "Motor monitoring" function can be regarded as a simplified alternative to bimetallic thermal cut-off switches but not as complete protection for the motor.
After completely disconnecting the power on the inverter, the calculated motor temperature is reset to the original value. If the connected motor is already heated up when it is reconnected and continues to be overloaded, overheating cannot be ruled out even with the motor monitoring feature activated.
If several motors are controlled by one inverter and all operated simultaneously, the motor temperature cannot be monitored. In this case, the motor monitor must be switched off (P541/P543).
The following parameters are assigned for the "Motor monitoring" function:
(Factory settings are marked up)
P060 Fault memory submenu: motor utilization. Fault message 12 is: "Motor overload"
P022 Motor utilization $1 \quad 0 . . .109 \%$ (range for "Switch-off" mode)
0... 200 \% (range for "Warning" mode)

P023 Motor utilization $2 \quad 0 . . .109$ \% (range for "Switch-off" mode)
$0 . . .200 \%$ (range for "Warning" mode)
P31_ Manual adjustment 1/1
P3100 Motor rated current $1 \quad 20 . . .90 . . .200 \%$ (of inverter rated current)
P33_ Manual adjustment 2/1
P330 Motor rated current 2 20...90... 200 \% (of inverter rated current)
P54_ Motor monitoring
P541 Motor protection $1 \quad$ Off / Warning / Switch-off
P542 Cooling type 1 Self-cooled / Forced(blower)-cooled
P543 Motor protection $2 \quad$ Off / Warning / Switch-off
P544 Cooling type 2 Self-cooled / Forced(blower)-cooled
P61_ Binary output Assignable with: motor warning 1 or motor warning 2
If "Warning" is set for motor protection $1 / 2$ (P541/543), a warning is issued when motor utilization > 100%; the motor is not switched off when motor utilization > 109\%.
If "Switch-off" is set for motor protection $1 / 2$ (P541/543), a warning is issued when motor utilization > 100% and the motor is switched off when motor utilization $>109 \%$.

P55_
Synchronous operation control (only with Option FRS 31)
For a description of parameter group P55_ "Synchronous operation control" see System Description/Installation and Operating Instructions for the FRS 31 "Synchronous operation control" option.

P56_
Fieldbus PD description
(FFP31C or FFI31C)
For a description of parameter group P56_"Fieldbus PD Description" see the Fieldbus Unit Profile Manual.

Fieldbus parameters

(FFP31C or FFI31C)

For a description of parameter group P57_ "Fieldbus parameters" see the Fieldbus Unit Profile Manual.

Binary inputs TL.42/43/47/48/49
(with option FEA: TL.48/49/50/51 FIO: TL. 48/49/50/51/52/53/54) The following control functions can be programmed to the 7 binary inputs (the inverter must be not enabled to do this):

Param. addr.	Factory setting	Assignment	Binary input signal		Effective when the inverter is		$\begin{aligned} & \text { Explana- } \\ & \text { tion } \end{aligned}$
			status "1"	\|status "0"	not enabled	enabled	
	$\begin{aligned} & \text { fixed } \\ & \text { TL } 41 \end{aligned}$	CW / stop	Clockwise operation	$\begin{aligned} & \text { Stop with ramp } \\ & \text { t11/21 or t12/22 } \end{aligned}$		\bullet	$\begin{aligned} & \hline \text { P120 } \\ & \text { P130 } \end{aligned}$
P600	TL. 42	CCW / stop	Counterclockwise operation	Stop with ramp t11/21 or t12/22		\bullet	
P601	TL. 43	Enable / Rapid stop ${ }^{1)}$	Enable	Rapid stop with ramp t13/t23		\bullet	P140
P602	TL. 47	Ramp selection t2/t1*)	$\begin{aligned} & \text { Ramp t12/22 } \\ & \text { active } \end{aligned}$	$\begin{aligned} & \text { Ramp t11/21 } \\ & \text { active } \end{aligned}$		-	$\begin{aligned} & \text { P120 } \\ & \text { P130 } \end{aligned}$
P603	TL. 48	n 11	n11	Only external		\bullet	P160
P604	TL. 49	n12 n13	n12	setpoints are active		\bullet	P170
P605	$\begin{aligned} & \text { TL. } 50 \\ & (F E A 31 C \\ & \text { FIO31C) } \end{aligned}$	Parameterswitchover *)	Parameter set 2	Parameter set 1	\bullet		P350
P606	$\begin{aligned} & \text { TL. } 51 \\ & (\text { (FEA31C } \\ & \text { FIO31C) } \end{aligned}$	Reset	Reset is initiated if the signal a fault indication	goes from "0" to "1" after			
		Mot. pot. up *)	Mot. pot. UP	Setpoint unchanged		\bullet	P150
		Mot. pot. down *)	Mot. pot. DOWN	Setpoint unchanged		\bullet	
		Deceleration monitoring*)	Normal condition	$\underset{\mathrm{f}_{\text {ref }} f}{\text { Comparison }} \mathrm{f}_{\text {outp }}$ and		\bullet	P500
		Enable / Controller inhibit	Enable	$\begin{aligned} & \text { Controller inhibit, Voutp= } \\ & \text { "0" } 61 \text { "Brake" = "0" } \\ & \text { TL. } 61 \text { "Bre } \end{aligned}$		-	
		Fixed setpoint selection	Selection of fixed setpoints of inactive parameter set				$\begin{aligned} & \text { P160 } \\ & \text { P170 } \end{aligned}$
		Setpoint active	Read setpoint n2	Ignore setpoint n2			P110
		Characteristics (patterns)	Pattern 3 (P22_) effective	Pattern 1 (P20_) effective		\bullet	only effective in parameter set 1
		Slave free running*)	Slave free running	Master-slave operation		-	P880
		External fault ${ }^{2}$	Normal condition	External fault		\bullet	
		No function	Terminal has no effect				
		Hold control (only with FRN 31C or FEN 31C/FPI 31C)	Normal condition	Deceleration with active ramp down to start-stop freq.; drive electr. held in reached position (no stop), no activation of brake			P260
		FRS zero point	Set	inactive		\bullet	Synchro-
		FRS CTRL	Master at rest	Master running		\bullet	nism
		FRS synchr. start	Rotat. field enabled	Master inhibited		\bullet	
		FRS teach in	Start teach in	Stop teach in		\bullet	
		Limit switch CW	/CW limit switch inactive	CW limit switch active, Rapid stop		\bullet	Basic unit or IPOS
		Limit switch CCW	/CCW limit switch inactive	CCW limit switch active, Rapid stop		\bullet	
		Reference cam	Reference cam approached	No reference cam		\bullet	IPOS
		Reference travel	Reference travel started	No reference travel		\bullet	

[^3]
Note on P61_/ P63_:

The inverter will start a self-test (approx. 3.5 s) when connected to the supply system or the 24 V supply on TL. 40 in the de-energized state. During the self-test period the analog output signals and the binary output signals are at level $=$ " 0 ".
Important: Do not connect binary outputs to an external voltage source. Damage to the binary outputs will occur if an external voltage source is applied!

P61_
Binary outputs TL. 62
(with option FEA 31C: TL.63/64
FIO 31C: TL. 63/64/69/70/71/72)
The binary outputs can be programmed to one of the following signals. If an output is programmed to "No function" it always has level " 0 ". This parameter cannot be changed while the inverter is enabled.

Operational status signal

no function			always status "0"	
MC ready		Ready for operation	Not ready for operation	
Rotating field ON	Rotating field	Stationary field		
Rotating field OFF	Stationary field, Output stage inhibited			
Brake APPLIED	Motor brake applied	Brake released		
Brake RELEASED	Brake released	Motor brake applied		
Manual operation *)	Manual operation ON	Manual operation OFF		
Parameter set 1/2 *)	Parameter set 2	Parameter set 1		
Zero speed 0 (FRS 31C)		Drive at rest	Drive rotating	
Motor warning 1	Motor utiliz. 1>100 \%			
Motor warning 2	Motor utiliz. 2> 100 \%			
Ixt warning1)	Normal operation	Ixt >115 \%		
In position	Motor in position	not in position	IPOS	
IPOS output 1...8		dependent on IPOS program		IPOS

Range signals

$\mathrm{f}_{\text {ref }} 1$	$\mathrm{f}<\mathrm{f}_{\text {ref }} 1$	$\mathrm{f}<\mathrm{f}_{\text {ref }} 1$	$\mathrm{f}>\mathrm{f}_{\text {ref }} 1$	
	$f>f_{\text {ref }} 1$	$\mathrm{f}>\mathrm{f}_{\text {ref }} 1$	$\mathrm{f}<\mathrm{f}_{\text {ref }} 1$	
$\overline{\mathrm{fref}^{2}}$	$\mathrm{f}<\mathrm{f}_{\text {ref }} 2$	$\mathrm{f}<\mathrm{f}_{\text {ref }} 2$	$f>\mathrm{fref}^{2}$	P 413
	$f>\mathrm{fref}^{2}$	$f>\mathrm{f}_{\text {ref }} 2$	$\mathrm{f}<\mathrm{f}_{\text {ref }} 2$	
$\begin{aligned} & \begin{array}{l} f=f_{\text {setp }} \\ \text { Actual value }=\text { setpoint } \end{array} \end{aligned}$	$f=f_{\text {setp }}$	$f=\mathrm{f}_{\text {setp }}$	$\mathrm{f} \neq \mathrm{f}_{\text {setp }}$	P 431
	$\mathrm{f}=\mathrm{f}_{\text {setp }}$	$\mathrm{f}=\mathrm{f}_{\text {setp }}$	$\mathrm{f}=\mathrm{f}_{\text {setp }}$	
$\mathrm{I}_{\text {ref }}{ }^{2 /}$	$1<\mathrm{I}_{\text {ref }} 1$	$1<\mathrm{I}_{\text {ref }} 1$	$1>\mathrm{I}_{\text {ref }} 1$	P 453
	$1>\left.\right\|_{\text {ref }} 1$	$1>\mathrm{I}_{\text {ref }} 1$	$1<\left.\right\|_{\text {ref }} 1$	
$\overline{\mathrm{Iref}^{2}}$	$1<\mathrm{Iref}^{2}$	$1<I_{\text {ref }}{ }^{2}$	$1>\mathrm{I}_{\text {ret }}{ }^{2}$	P 463
	$1>\mathrm{Iref}^{2}$	$1>\mathrm{I}_{\text {ret }}{ }^{2}$	$1<\mathrm{I}_{\text {ret }}{ }^{2}$	
$\overline{I m a x}$	$1<I_{\text {max }}$	$1<I_{\text {max }}$	$I=1$ max	P 470
	$I=I_{\text {max }}$	$I=I_{\text {max }}$	$1<I_{\text {max }}$	
f window skip *)		$\mathrm{f}<>\mathrm{f}_{\text {skip }}$	$\mathrm{f}=\mathrm{f}_{\text {skip }}$	P 230
FRS lag error		no lag error	lag error value exceeded	P 551
FRS alert		no alert	value for alert exceeded	P 550
Slave in position		Slave in position window	Slave not in position window	P 554

Fault signals		
Fault deceleration monitoring		
Fault		
External fault		
Short circuit		
DC link overvoltage>>		
Overload Ixt>>		
Heat sink overtemperature		
Fault brake chopper		

Normal operation	Fault decel. monitoring	P 500 f
Normal operation	Fault	
Normal operation	External fault	Binary input
Normal operation	Overcurrent at binary output	
Normal operation	$\mathrm{V}_{D C}$ link $>940 \mathrm{~V}_{\mathrm{DC}}$	
Normal operation	$\mathrm{Ixt}>125 \%$	
Normal operation	Heat sink temperature $>90^{\circ} \mathrm{C}$	
Normal operation	$\mathrm{V}_{D C}$ link $>940 \mathrm{~V}_{\mathrm{DC}}$	

[^4](with FEA 31C)
The analog outputs TL. 38 and TL. 39 of the FEA 31C option can be programmed to the following control functions:

Indication	Signal	Voltage level	Tol.	Explanation
Actual frequency ${ }^{1)}$	$\mathrm{f}_{\text {outp }}$	$\pm 10 \mathrm{~V} \xlongequal{\wedge} 50 \mathrm{~Hz}$	2 \%	Output actual frequency with sign: + = clockwise (CW) / - = counterclockwise (CCW)
Setpoint frequency	$\mathrm{f}_{\text {setp }}$	$\pm 10 \mathrm{~V} \xlongequal{\wedge} 50 \mathrm{~Hz}$	2 \%	Output setpoint frequency with sign: + = clockwise (CW) / - = counterclockwise (CCW)
Actual speed - without n-controller - with n-controller	$\mathrm{f}_{\text {outp }} \pm \mathrm{S}$	$\begin{aligned} & \pm 10 \mathrm{~V} \wedge \\ & 1500 \mathrm{rpm} \end{aligned}$	10 \%	Output frequency with sign: + = clockwise (CW) / - = counterclockwise (CCW) Corrected for slip, i.e. an indication proportional to the speed
	$\mathrm{n}_{\text {actual }}$		2 \%	The actual speed measured on the motor
Ramp generator	$\mathrm{n}_{\text {setp }}$	$\pm 10 \mathrm{~V}, \xlongequal{\wedge} 50 \mathrm{~Hz}$	2 \%	Overall effective setpoint after ramp generator, i.e. ($\mathrm{n} 1+\mathrm{n} 2$) or $(\mathrm{n} 11 / 12 / 13+\mathrm{n} 1)$ or ($\mathrm{n} 21 / 22 / 23+\mathrm{n} 1$)
V motor	$V_{\text {outp }}$	$+10 \mathrm{~V}, \wedge 200 \%$	10 \%	Output voltage $100 \%, \triangleq 500 \mathrm{~V}_{\text {AC }}$ with MOVITRAC ${ }^{\circledR}$ 31C...-503 $250 \mathrm{~V}_{\mathrm{AC}}$ with MOVITRAC ${ }^{\circledR} 31 \mathrm{C} \ldots-233$
Ixt value	Ixt	+10 V, ^200\%	2 \%	Utilization (lxt = $100 \% \triangleq$ continuous rated load)
Apparent current ${ }^{2)}$	$\mathrm{l}_{\text {app }}$	+10 V, へ 200%	10 \%	Apparent current (output current of a phase)

1) factory setting TL. 38
${ }^{2)}$ factory setting TL. 39

Fig. 56: Signal voltage of analog outputs

The signal voltage is $0 \ldots \pm 10 \mathrm{~V}$. It can be scaled by a factor ($v=0.01 \ldots 3.0$ in steps $\Delta v=0.1$). (P631/P633)

P634...P635

Measurement output TL. 65

The measurement output TL. 65 can be programmed to the same control functions as the analog outputs of the FEA 31C option (P630 ... P633). The output delivers a PWM signal (TTL level 5 V $\pm 10 \%$) which is suitable for indication purposes using moving-coil or moving-iron instruments. The output voltage can be scaled in P635.

The setpoint input TL. 32/33 on the FEA 31C option can be switched off. The analog input TL. 36/37 "External current limit" on the FEA 31C option can be switched on.
Parameter group 700 CONTROL FUNCTIONS

P71_

Hoist function
The hoist function can only be activated when the inverter is not enabled. It is suitable for hoists without counterweights and:

- Activates certain monitoring functions required for the hoisting mode, for correct motor connection.
- During an adjustable premagnetization time (P326 or P346) a current is applied to the motor as soon as the start command is given (= enable on TL. $43+$ directional command on TL. $41=$ UP or TL. 42 = DOWN). The applied current builds up the motor torque before the brake is released.
- Controls the brake release via the binary output "Brake" TL. 61 in accordance with hoist requirements.
- Controls the Boost and IxR depending on the direction of travel (hoisting/lowering).
- Applies a holding current, i.e. a settable postmagnetization time to the motor (P327 or P347).

Notes on proper hoist selection:

- Select the drive for $\mathrm{f}_{\text {max }}(\mathrm{P} 202 / 212)=70 \mathrm{~Hz}$.
- Select the motor power one frame size rating higher than the inverter power.
- The control must be implemented in such a way that a change in the motor's direction of rotation can only be made when the drive is at rest.
Important: If this condition is not met, a fault shut-down will result with fault message 14
"Output open".

Notes on commissioning:

- The correct relationship of CW rotation TL. $41=\mathrm{UP}$ movement and CCW rotation TL. $42=$ DOWN movement must be ensured.
- The "Motor size-up" function (P328/P348) will set Boost and IxR automatically at each enable. It is also possible to change the Boost and IxR values. In this case they must be determined at the bottom of its travel command, UP = CW.
The setting should produce an operating current $<100 \% \mathrm{I}_{\mathrm{N}}$.
- Set $\mathrm{f}_{\text {min }}(\mathrm{P} 200 / 210) \geq 6 \mathrm{~Hz}$, because of the motor's rated slip, to ensure a definite hoisting motion.
- Set $\mathrm{f}_{\text {max }}(\mathrm{P} 202 / 212)=70 \mathrm{~Hz} ; \mathrm{f}_{\text {base }}(\mathrm{P} 201 / 211)=50 \mathrm{~Hz}$ (with $\mathrm{f}_{\text {in }}=50 \mathrm{~Hz}$ and 50 Hz motor).
- Set $f_{\text {max }}(P 202 / 212)=80 \mathrm{~Hz}$; $\mathrm{f}_{\text {base }}$ (P201/211) $=60 \mathrm{~Hz}$ (with $\mathrm{f}_{\text {in }}=60 \mathrm{~Hz}$ and 60 Hz motor).
- Activate motor mode speed monitoring function (P510), set response time (P511) to 0.1...0.2 s.
- Activate regenerative monitoring function (P520), set response time (P521) to 0.1...0.2 s.

Notes on speed control:

- On hoists with speed control (option FRN 31C or FEN 31C) the hoist function P710 must only be activated to monitor the correct motor connection. With active hoist function, the drive is monitored for "START CONDITIONS" (Error 13) and "OUTPUT OPEN" (Error 14).

The rapid start function keeps the motor energized over an adjustable standby time (P772 or 725) with an adjustable current ($\left.10 \ldots 50 \%\right|_{N}$) so that when the start command is given (= enable on TL. 43 + directional command on TL. 41 or 42) the motor can start immediately within the standby time ($3 \ldots 180 \mathrm{~s}$). If the start command is not given within the standby time, the rapid start capability is interrupted to protect the motor from overheating and only a normal start is possible. Renewed rapid start capability is only possible after a subsequent stop within the standby time.

Notes on the rapid start function:

- The functions "Motor size-up" P328/P348 and "Rapid start" cannot be active simultaneously.

P73

DC braking/holding current
The function "DC braking" can be activated for 1-Q mode (with 4-Q mode P890/P891 = "No") when the inverter is not enabled. It enables the motor to be braked with DC injection (set at $80 \% I_{N}$). The DC braking is initiated with the command "RAPID STOP" i.e. removal of the enable command TL. 43 = " 0 ".
The braking time (P731 or P734) $=0.1 \ldots 30 \mathrm{~s}$ and should not be set any longer than is necessary to stop the drive. When the braking time has expired a holding current injection follows, if the value P 732 or P735 is set $>0 \%\left(\max .50 \% I_{\mathrm{N}}\right)$. This holding current is only active when the enable is removed; the basic indication "HOLDING CURRENT" is displayed. It can therefore only be removed by again applying an enable command TL. $43=$ " 1 ". A direction of rotation command ("CW/STOP" or "CCW/STOP" = " 0 ") is required if the drive is not to start when the enable command is given. Otherwise, the direction of rotation commands have no influence on DC braking.

At rest, the DC-braking torque $=0$. The braking torque is high at low speeds, and is reduced at higher speeds.

Fig. 58: Braking torque 00544AEN

Notes on DC current braking:

- If the DC braking function is activated and the holding current is set > " 0 ", then the heating current function (P740) is inactive.

P74_

Heating current

The heating current function ($l_{\text {neat }}=0 . . .50 \% l_{N}$) is useful in low ambient temperature environments, to counteract the danger of water condensation inside the motor and thus the danger of freezing (in particular the disc brake). When setting the heating current, ensure that the setting does not result in overheating of the motor (if the motor housing feels warm to touch the setting is correct). The heating current can be switched off by removing the enable command. For this purpose one of the binary inputs (P60_) must be programmed to the function "Enable/Controller inhibit".

Notes on heating current:

- The heating current is inactive when the DC braking function (P730) is activated and the holding current is set > " 0 ".

P76

Synchronous operation control
(with FRS 31C)
For a description of parameter group P76_ "Synchronous operation control" see "Synchronous operation control" option in the manual.

P77_

Operating mode (with FRN 31C or FEN 31C or FPI 31C)
Available operating modes are V/f control, speed control and positioning control. For speed and positioning control the motor must be fitted with an encoder. These functions can only be activated when the inverter is not enabled. The speed control option also is effected by some basic unit parameters (e.g. slip). The speed control is only available in parameter set 1 . If parameter set 2 is selected while speed control is active, the inverter will automatically switch to V/f mode.

The FRN 31C option, speed controller with input/output expansion comprises both the FEA 31C (input/output expansion) and the FEN 31C (speed detection) options. The FEN 31C option (speed controller without input/output expansion) consists of only the FEN 31C (speed detection) option $(\rightarrow$ Sec. 1.7.4 Parameter list).

Parameter group 800

SPECIAL FUNCTIONS

P800

Parameter lock

If P800 = "YES", the parameter lock function prevents any change of adjustable parameters (Exception: P862 "Pushbutton RESET"). Activation of this function is recommended after the inverter settings have been optimized.

P801

Save
Parameter P801 allows you to specify whether parameter changes are to be saved in EEPROM:

- $O N=$ Parameter changes are saved immediately to EEPROM and remain effective after powerdown.
- $O F F=$ Parameter changes are only effective until the inverter is switched off or reset. If the inverter is powered down and then powered up again, or a reset is carried out, the valid parameter values will not be those which were last used, but those which were last saved.
The life expectancy of an EEPROM is limited by the number of save operations. If the parameters are changed frequently via the serial interface (RS-232/RS-485), the save function should be suppressed by P801 = "OFF".
Exception: Fault indications continue to be saved via the fault memory function (P060 ...).

With the optional keypad, P802 can be used to switch from the short user menu to the comprehensive parameter menu. The factory setting for the active menu type is the user menu. It is also active after a factory setting (P830) has been carried out. The user menu is identified by a slash after the parameter address in the display, e.g. P802/The parameters which are included in the user menu are marked with a $\mathbf{K} /$ in the parameter list.
After switching the inverter off and on again, the active menu will be the one which was last used.

P81

Service Information

This function can be used to call up the EPROM numbers, whereby the 8th and 9th digit (after the point) indicate the version, i.e. the modification status:

P810	EPROM "System" (Processor pcb)
P811	EPROM "Keypad"" (FBG 31 keypad)
P812	EPROM "Fieldbus"

P813 shows the service telephone numbers for Germany or France.

P82

Parameter copying

With this function (P822 = "Yes") it is possible to copy all the adjustable parameters of the complete menu and their settings including parameter selection set $1 /$ set 2 , from the "MOVITRAC ${ }^{\circledR}$ " inverter to the optional FBG 31C "EEPROM" (apart from the fault memory) and vice versa. The direction of parameter transfer is determined by the setting of parameter P820. In this way, parameter sets can be copied to other MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ inverters. The copying process is started with P822 = "YES". During the copying process (about 10 s) the display "Copying data" will appear.

P83

Factory setting

The factory settings for the inverter are stored as non-volatile data. The factory settings can be reactivated by P830 = "YES" while the inverter is not enabled. During the execution of this command the display indicates "SETUP ACTIVE" and the yellow LED V1 is flashing. The fault memory P060 ... is erased during this process.
Note: For 1-Q operation set P890 (4-quadrant operation) to "No" afterwards.
In parameter P831 (selection) either the standard factory settings for operation on a $400 \mathrm{~V}_{\mathrm{AC}} / 50 \mathrm{~Hz}$ supply system or the US factory settings for operation on a $460 \mathrm{~V}_{\mathrm{AC}} / 60 \mathrm{~Hz}$ system or the Brasilian factory settings for operation on a $380 \mathrm{~V}_{\mathrm{AC}} / 60 \mathrm{~Hz}$ can be selected. P831 is not changed when the factory setting (P830 = "YES") is carried out.

Mode interfaces

The "Interface mode" function allows the user to select the type of operator control and communication while the inverter is not enabled. The following options are available:
P841 Control Mode: STANDARD: The inverter is controlled via the electronic terminal strips X2/X3/X14; the parameters are set via the USS 11A option with the RS-232 interface, the UST 11A option with the RS485 interface, the FEA 31C option with the RS-485 interface, or the FBG 31C keypad.
REMOTE-SETP: The setpoint is not entered via the setpoint inputs (FEA 31C option: TL. 32/33), but via PC (RS-232) or RS-485.
REMOTE-CTRL: Not only the setpoint but also all other terminal functions are taken over from the PC (via RS-232) or RS-485.
FIELDBUS: The inverter is controlled via field bus.

P842 Inverter address:

P843 Response time:

If the inverter is connected via RS-485, it is given a unique address ($0 . . .63$), which must be entered here. The address P842 $=0$ can only be set for point-to-point connections. When more than two inverters are linked via RS-485, each inverter must be set to an address not equal to zero.
When communicating via the RS-485 interface (FEA 31C: TL. 67/68) it may be necessary to delay the inverter response. This applies when the inverter is controlled from the PC with the MC_SHELL software. This parameter is used to set the delay time.

P85

Language selection

The text display can be changed to GERMAN/ENGLISH/FRENCH (FBG 31C-01) with the language selection feature.

P86

Reset mode

Apart from the standard types of fault reset, power OFF and ON again as well as the external reset command (via a programmable binary input P60_), the reset mode function also provides for the following types of reset:
P860/861 Auto-Reset: The auto-reset mode effects automatic restart after a fault, with an adjustable delay before restart of $3 \ldots 30 \mathrm{~s}$
The auto-reset function initiates a maximum of three restart attempts if the time between 2 faults is < 10 min ; thereafter it will remain in the fault condition. If the unit becomes operational after an auto-reset, after 10 minutes the reset memory is reset to zero, enabling 3 reset attempts again. If the auto-reset is turned off and on again, or after power-down and power-up, another 3 attempts will be made.
Important: Do not use with drives where an automatic start-up would present a safety hazard to people or equipment!
P862 Key reset:
The entry "Yes" initiates a reset.
In the case of a fault, pressing key [E] on the FBG 31C results in this query.

Manual operation

The "Manual operation" function allows the inverter to be operated manually via the FBG 31C keypad, without external commands on the electronics terminals. The input commands are ineffective during manual operation.
Manual operation remains in effect after power-down and power-up again. The inverter is not enabled after power up. A directional command with the $[\rightarrow]$ or $[\leftarrow]$ keys results in an enable at $\mathrm{f}_{\text {min }}$ in the chosen direction of rotation.

Fig. 59: Manual operation with FBG 31 C

P88

Master-slave operation
(with FEA 31C/FIO 31C)
The master provides the direction of rotation commands and "Enable/Rapid Stop", as well as its output frequency as setpoint input to the slaves via the serial interface RS-485 (TL. 67/68).
A binary input (P60_) at the slave can be programmed to "Slave free-running":
"1" signal: slave free-running
" 0 " signal: the slave follows the master
The setpoint input of the master can be modified by the slave by a factor of 0.10 .. 10.00 (P882).
Examples: $\quad \mathrm{P} 882=1.00 \rightarrow \quad \mathrm{f}_{\text {slave }}=\mathrm{f}_{\text {master }}$ (without slip gain from master)
$\mathrm{P} 882=0.10 \quad \rightarrow \quad \mathrm{f}_{\text {slave }}=0.1 \bullet \mathrm{f}_{\text {master }}$
$\mathrm{P} 882=10.00 \quad \rightarrow \quad \mathrm{f}_{\text {slave }}=10.0 \bullet \mathrm{f}_{\text {master }}\left(\right.$ Note: observe $\mathrm{f}_{\max }$ limit for the slave $)$

Notes on functionality:

- Master and slave usually operate with the same V/f characteristic curves. However, they can work with different V/f characteristic curves for different drive tasks.
- External and internal setpoints at the slave remain without effect in master slave mode.
- If the master is operating in V/f mode, the output frequency is provided from the master to the slave as a setpoint via the RS-485 interface (FEA 31C/FIO 31C).
- If the master is operating in speed control mode (FRN 31C or FEN 31C "Speed control" option and speed control parameter P770 active), the actual speed is provided from the master to the slave via the RS-485 interface.
- The slave can also be switched to normal V/f operation (as in the case of inactive master-slave operation): To do this one of the binary inputs (P60_) on the slave must be programmed to "Slave free-running" while the unit is disabled. A " 1 " signal on this input will cause the slave to go into free-running, on signal level " 0 " the slave returns to master-slave operation.
- The address setting of the RS-485 interface is ineffective for master-slave operation. The address setting is important if several inverters are addressed via the RS-485 from a PC with an RS-485 interface (e.g. reading or setting parameters).
- The RS-485 interface has an internal terminating resistor; no external terminating resistor must be connected

Notes on setting and wiring:

- Master and slave must be connected via RS-485 (FEA 31C / FIO 31C: TL. 67/68):

Connect master TL. 67 to slave TL. 67 and master TL. 68 to slave TL. 68. The master provides the direction of rotation commands as well as the output frequency as setpoint input to the slaves via the RS-485 interface.

- The OV leads (TL. 30) of master and slave must be connected.
- The slaves must have a " 1 " signal applied to TL. 41 and TL. 43 (for operational readiness).
- The slave can also be stopped separately in master-slave operation by setting Enable/Rapid stop TL. 43 = " 0 ".

P89_

Four-quadrant operation

Four-quadrant (4-Q) operation is factory-set to "YES". This setting cannot be changed while the inverter is enabled. 4-Q operation can be suppressed by setting P890 or 891 to "NO" and while no braking resistor is connected.
When using the parameter switchover P350 = "Yes" it is possible to set 4-Q operation for one parameter set, and $1-Q$ operation for the other. However, in this case the braking resistor remains connected, and will only slightly respond in 1-Q operation (when the drive is regenerating).

Note:

- For 1-Q operation, $4-\mathrm{Q}$ operation must be set to "No" again in P890 after a factory setting has been carried out.
- It is not possible to use 4-Q operation and DC braking (P730) at the same time.
- 1-Q operation results in a limiting of the slip compensation (P323/P343) to -0.5 Hz (regenerafive).

1.7.4 Summary of parameter for different applications

Application/function	Used parameters	See also
Parameter switchover	P200/210/220/250/350/605	
Setting control range limit towards zero	$\mathrm{P} 180 / 181 / 200(210 / 220) / 260$	
Motor monitoring	$\mathrm{P} 310(330) / 541 / 542(543 / 544) /$ display P022(023)	
Hoist function	$\mathrm{P} 200(\geq 6 \mathrm{~Hz}) / 201(50 \mathrm{~Hz}) / 202(70 \mathrm{~Hz}) / 260 / 510 / 511 / 520 /$ $521 / 710 / 890$	
Speed control	With FRN 31C or FEN 31C options: P323/324/510/511/520/521/770-774/890	See detailed description below
Synchronous operation	With FRS 31C option: P323/324/510/511/520/521/770-774/890/760/-769/ $550-557 / 602-606 / 611-613$	Manual for FRS 31C Synchronous Operation

Setting the parameters for the FRN 31C or FEN 31C "Speed control" option:

Par Add.	Menu item	Setting range (Factory setting)	Setting and function
P777 and P778 improve the control response. P779 "Hold control" is an independent function. These 3 parameters need not necessarily be set.			
777	P gain feedforward	0...60 $\quad \Delta=1$	The feedforward prevents the PI controller (P771/P772) from overshooting too much. The higher P777 is set, the higher P778 should be set, too. P777 = "0" mean feedforward OFF
778	Setpoint filter	0...5... $100 \mathrm{~ms} \quad \Delta=1 \mathrm{~ms}$	
779	P gain hold control	0...60 $\quad \Delta=1$	The hold control is designed for operation with bipolar setpoint input ($\mathrm{n} 2= \pm 10 \mathrm{~V}$). As soon as the binary input (P60_) which is programmed to "Hold control" changes to " 0 ", the inverter ramps down the active deceleration ramp to the start/stop frequency; and then changes to the motor slip at rest. The drive is held in the position reached, until the signal changes to " 1 " again. If the hold control is activated via the binary input before the enable command is given, the drive will switch directly to "Hold Controller" when the enable command TL. $43=$ " 1 " is given. In P779 the P gain of the hold control can be set: "0" = "OFF".
004	Speed indication		Derived from the encoder signals
260	Start/stop frequency	0...2.0...10.0 Hz typical value range: $0.5 \ldots . .1 .5 \mathrm{~Hz}$	Frequency at which the rotating field starts, with $f_{\text {min }}$ limiting the lowest possible speed.
321	Boost 1	0... $100 \% \quad \Delta=1 \%$	If P774 = "Yes" an automatic adjustment is made together with IxR. Boost and IxR are set to the same display value.
322	Ix R 1	0...100\% $\quad \Delta=1 \%$	Works as "s \times R" (slip instead of current controlled) in combination with speed controller. If P774 = "Yes" an automatic adjustment is made. This value can however still be changed manually after the automatic adjustment has been made. Increase of $\mathrm{V}_{\text {outp }}$ if $\mathrm{s}_{\mathrm{N}}: 100 \%=70 \mathrm{~V}$
323	Slip 1	0...10 Hz $\quad \Delta=0.05 \mathrm{~Hz}$	Rated slip of connected motor as described in P323.
324	Pole pair number 1	1...2...6 $6=1$	Number of pole pairs of the connected motor: 2 -pole = "1" / 4-pole = "2"
510	Motor mode speed monitoring 1	Yes/No	$\begin{aligned} & \text { Setting "Yes" } \\ & \rightarrow \text { for encoder monitoring, } \\ & \rightarrow \text { to recognize overload when the drive is monitoring } \end{aligned}$
511	Response time 1	0.1...1... $9 \mathrm{~s} \quad \Delta=1$	In connection with P510 Note: The acceleration and overload times must also be considered here.
520	Regenerative speed monitoring 1	Yes/No $\quad \Delta=0.1 \mathrm{~s}$	Setting "Yes" \rightarrow to recognize regenerative overload
521	Response time 1	0.1...1... $9 \mathrm{~s} \quad \Delta=0.1 \mathrm{~s}$	In connection with P520
710	Hoist function		In hoists with speed control the hoist function will only be required to monitor the correct connection. The commissioning instructions must however be observed. Exception: assignment CW = UP is not necessary. With active hoist function, the drive is monitored for "START CONDITIONS" (Error 13) and "OUTPUT OPEN" (Error 14).

Important: If the encoder ppr (P773) is set too low or the pole pair number (P324) too high, the drive will accelerate uncontrolled to $f_{\text {max }}$ when enabled and cannot be stopped without removing the power!
Only if motor mode speed monitoring 1 (P 510) and regenerative speed monitoring 1 (P 520) are active, will the drive trip on "REGEN. OVERLOAD" (fault 5) or "MOT. OVERLOAD" (fault 12) and switch off immediately.
If P510 and P520 are not active, the drive can only be switched off by an emergency stop (power off).
Exception: If one of the programmable binary inputs (P60_/TL. 42-51) is programmed to "Controller inhibit", the drive can also be switched off with a " 0 " signal = controller inhibit.

1.8 MC_SHELL 2.90 user software

(Order no. 0921 2930)
MOVITRAC ${ }^{\circledR}$ 31C can be connected to a PC via one of the optional USS 11A (RS-232) or UST 11A (RS-485) serial interfaces or the RS-485 interface on the FEA 31C (input/output expansion) option. For parameter adjustment and control of the MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ frequency inverter from a PC the MC_SHELL user software is available from SEW free of charge, as a complimentary accessory. It comes on 3.5 " diskettes, together with the "MC_SHELL Manual".

Important:

Though the MOVITRAC ${ }^{\circledR 31 C}$ parameters can be set with older versions of MC_SHELL, it is not possible to address all unit parameters with these versions.

1.9 MC_SCOPE process data visualization 1.11

(Order no. 0922 6354)
Note: MC_SCOPE does not work with MOVITRAC® 31C, size 0 units (MC31C005/007/011/014).

- Offers a powerful, user-friendly oscilloscope feature for optimizing drive performance without a storage oscilloscope or similar test instruments. With the MC_SCOPE software all that is needed for commissioning the frequency inverter is a PC, which may at the same time also be used for parameter setting, check measurements, control, data logging and documentation.
- MC_SCOPE runs on PCs/ATs with an 80386 processor or higher and a VGA video adapter.

A co-processor is supported.

- Functions
- optimization of drive performance
- direct access to all important parameters, which influence the drive's dynamic response
- 4-channel measured value recording: 2048 sampled data points per channel
- 5 -channel display (simultaneously)
- measured value tracing in real time, data transmission via serial interface
- waveform display in color on suitable PC monitor
- Operator control
- ease of use with mouse or keyboard (to SAA standard) through buttons and other symbols
- on-line Help feature
- selectable scaling of the coordinate system
- measurement curves and parameter settings can be stored and printed for precise documentation The MC_SCOPE software can be purchased from SEW as an accessory to the MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$.

Fig. 58: Visualization of process data with MC_SCOPE

2 Project Planning

2.1 Project planning flowchart

Fig. 62: Project planning flowchart

2.2 Motor selection for MOVITRAC ${ }^{\circledR}$ 31C...-503

Depending on the behaviour of the driven load a difference is made between applications where the torque demand is independent of the speed (constant torque) and applications where the torque demand at the output shaft is a square of the speed (variable torque loads).

Applications with constant load (e.g. travel drives and hoists)

With this type of application the choice of the V/f pattern in a variable frequency inverter has a decisive influence on the torque and power characteristics of the motor. V/f patterns with a base frequency (breakpoint) have the following effects with increasing speed:

- up to the base frequency, the motor has constant torque and increasing power,
- above the base frequency, the motor has constant power while the torque decreases reciprocally.

The range above the base frequency is the continuous field weakening range where the pull-out torque ($\mathrm{M}_{\text {break-down }} \approx 2.4 . . .3 \times \mathrm{M}_{N}$) decreases as a square of the rise in frequency. This means that there are no overload reserves available above about 90 Hz because of the danger of the motor stalling.
The setting range of the V/f characteristics is described in Sec. 1.7.3, Parameter description (parameter group 200). When selecting the V/f characteristic the motor voltage parameter (P329/ 349) should also be taken into account.

Basic recommendations for motors fed from a variable frequency inverter:

- Use of insulation class F is required.
- Use of PTC thermistors (TF) or winding thermostats (TH). The latter are preferable for groups of drives fed from one inverter, since the series connection of TH contacts (normally closed) is not subject to operational constraints if common monitoring is provided.
- Use of 4-pole motors is preferred. This is especially valid for geared motors which, because of their mounting position, are operated with a high oil filling level.
Observe the following conditions when selecting the motor frame size from the table below:
- Operate the motor within a defined speed control range ($R=5: 1$ to $20: 1$) in continuous operation.
- The motor is loaded with rated torque even at minimum speed (= lower control range limit).

If one of these two conditions is not met for the service conditions concerned (for instance, positioning drive with a $20: 1$ speed control range in S 3 mode) then the motor can usually still be operated at its rated power without blower cooling. An unnecessarily oversized motor should be avoided, especially with a $230 \mathrm{~V}_{\mathrm{AC}}\left(290 \mathrm{~V}_{\mathrm{AC}}\right) /$ delta connection (the internal resistance would become so small that the short-circuit protection in the inverter might be tripped).

Sizing of hoists

In addition to the recommendations above, the following principles must be observed:

- Determination of the gear ratio must take into account that the 4 -pole motor is operated at $\mathrm{f}_{\text {max }}=70 \mathrm{~Hz}$ or $87(90) \mathrm{Hz}$, i.e.
- the gear ratio must be $70 / 50=1.4$ times higher than for 50 Hz mains operation or
- the gear ratio must be $80 / 60=1.33$ times higher than for 60 Hz mains operation.
- Use of motors sized one frame size higher than the required hoist power (=MOVITRAC ${ }^{\circledR}$ rating).
- Activating of the hoist function (\rightarrow Operating Instructions).

2.2.1 Delta/Star connection ($\mathbf{2 3 0} / 400 \mathrm{~V}_{\mathrm{AC}} / 50 \mathrm{~Hz}$)

Motors for $380 \mathrm{~V}_{\mathrm{AC}} / 60 \mathrm{~Hz}$ can also be selected according to the following table.

Connection Cooling	$\mathrm{P}_{\text {max }}$ for operation with MOVITRAC ${ }^{\text {® }} 31 \mathrm{C}$						For use with MOVITRAC ${ }^{\oplus 3)}$ Type
	Y/400 V $\mathrm{AC}{ }^{1)}$				$\Delta / 230 \mathrm{~V}_{\text {AC }}{ }^{2)}$		
	fan cooled			blower	fan cooled	blower	
$\mathrm{f}_{\text {min }}-\mathrm{f}_{\text {max }}(\mathrm{Hz}$)	10-50	6-60	5-70	2.5-50	9-87	2.5-87	
Speed control range	5:1	10:1	15:1	$\geq 20: 1$	10:1	$\geq 20: 1$	
Motor frame size	$\begin{gathered} P=P_{\text {reduced }} \\ {[\mathrm{kW}(H P)]} \end{gathered}$			$\begin{gathered} P=P_{n} \\ {[k W(H P)]} \end{gathered}$	$\begin{gathered} \mathrm{P}=\mathrm{P}_{\text {increased }} \\ {[\mathrm{kW}(\mathrm{HP})]} \end{gathered}$		
DT63 N4	0.12 (0.16)			-	0.25 (0.33)		$\begin{aligned} & 31 C 005-503 \\ & 31 C 008-503 \end{aligned}$
DT63 L4	0.18 (0.25)			-	0.37 (0.5)		
DT71 D4	0.25 (0.33)			0.37(0.5)	0.55 (0.75)		
DT80 K4	0.37 (0.5)			0.55(0.75)	0.75 (1.0)		31C007/008-503
DT80 N4	0.55 (0.75)			0.75(1.0)	1.1 (1.5)		31C011/015-503
DT90 S4	0.75 (1.0)			1.1 (1.5)	1.5 (2.0)		31C014/015-503
DT90 L4	1.1 (1.5)			1.5 (2.0)	2.2 (3.0)		31C022-503
DT100 LS4	1.5 (2.0)			2.2 (3.0)	3.0 (4.0)		31C030-503
DT100 L4	2.2 (3.0)			3.0 (4.0)	4.0 (5.4)		31C040-503
DV112 M4	$3.0 \quad$ (4.0)			4.0 (5.4)	5.5 (7.5)		31C055-503
DV132 S4	$4.0 \quad$ (5.4)			5.5 (7.5)	7.5 (10.0)		31C075-503
DV132 M4	$5.5 \quad$ (7.5)			7.5 (10.0)	9.2 (12.5)		31C110-503
DV132 ML4	7.5 (10.0)			9.2 (12.5)	11.0 (15)		
DV160 M4	9.2 (12.5)			11.0 (15)	15.0 (20)		31C150-503
DV160 L4	11.0 (15)			15.0 (20)	18.5 (25)		31C220-503
DV180 M4	15.0 (20)			18.5 (25)	22.0 (30)		
DV180 L4	18.5 (25)			22.0 (30)	30.0 (40)		31C300-503
DV200 L4	22.0 (30)			30.0 (40)	37.0 (50)		31C370-503
DV225 S4	30.0 (40)			37.0 (50)	45.0 (60)		31C450-503
DV225 M4	37.0 (50)			45.0 (60)			
D250 M4	45.0 (60)						

00547AEN

1) Also applies to motors with a mains voltage of 460 V or 500 V and for motors with $400 \mathrm{~V} / 690 \mathrm{~V}$ connected in Δ.
2) Also applies to motors with a mains voltage of 266 V or 290 V
3) The above units have a short-time overload rating of up to 1.5 times the rated load. If no overload reserves are required in continuous operation, the inverters can be operated continuously with increased output power (please refer to the Technical Data).

Applications with variable torque loads (e.g. fans and pumps)

With this type of application, thermal overloading of the motor at low speeds is unlikely and no overload peaks are expected when the speed is constant. Therefore inverter and motor may be sized such that the motor rated current is less than or equal to the increased output current of the inverter.

2．2．2 StarStar／Star connection（230／460 Vac $/ 60 \mathrm{~Hz}$ ）

	$\mathrm{P}_{\text {max }}[\mathrm{kW}(\mathrm{HP})]$ for operation with MOVITRAC ${ }^{\text {® }} 31 \mathrm{C}$					For use with MOVITRAC ${ }^{\circledR 1)}$ Type
Connection	人／460 V AC			人入／ $230 V_{\text {AC }}$		
Cooling		cooled	forced cooling	fan－cooled	forced cooling	
$\mathrm{f}_{\text {min }}-\mathrm{f}_{\text {max }}[\mathrm{Hz}]$	6－60	6－90	3－60	10－120	6－120	
Speed control range	10：1	15：1	$\geq 20: 1$	12：1	≥ 20.1	
Motor type		$P_{\text {reduced }}$ (HP)]	$P=P_{n}$ ［kW（HP）］		[(HP)]	
DT63N4	0.12	（0．16）	0.18 （0．25）	0.25 （0．33）	0.37 （0．50）	31C005－503／
DT63L4	0.18	（0．25）	0.25 （0．33）	0.37 （0．50）	0.55 （0．75）	31C008－503
DT71D4	0.25	（0．33）	0.37 （0．50）	0.55 （0．75）	0.75 （1．0）	31C007／008－503
DT80K4	0.37	（0．50）	0.55 （0．75）	0.75 （1．0）	1.1 （1．5）	31C011／014－503
DT80N4	0.55	（0．75）	0.75 （1．0）	1.1 （1．5）	1.5 （2．0）	31C014／015－503
DT90S4	0.75	（1．0）	1.1 （1．5）	1.5 （2．0）	2.2 （3．0）	31C022－503
DT90L4		（1．5）	1.5 （2．0）	2.2 （3．0）	3.0 （4．0）	31C030－503
DT100LS4		（2．0）	2.2 （3．0）	3.0 （4．0）	4.0 （5．4）	31C040－503
DT100L4		（3．0）	3.7 （5．0）	4.0 （5．4）	5.5 （7．5）	31C055－503
DV112M4		（5．0）	4.0 （5．4）	5.5 （7．5）	7.5 （10）	31C075－503
DV132S4	4.0	（5．4）	$5.5 \quad$（7．5）	7.5 （10）	9.2 （12．5）	
DV132M4		（7．5）	7.5 （10）	9.2 （12．5）	11 （15）	31C110－503
DV132ML4	7.5	（10）	9.2 （12．5）			
DV160M4		（12．5）	11 （15）		（20）	31C150－503
DV160L4		（15）	15 （20）	18.5	（25）	31
DV180M4	15	（20）	18.5 （25）			316220－
DV180L4	18.5	（25）	22 （30）			31C300－503
DV200L4	22	（30）	30 （40）			31C370－503
DV225S4	30	（40）	$37 \quad(50)$	45	（60）	31C450－503
DV225M4		（50）	45 （60）			
D250M4		（60）				

1）The above units have a short－time overload rating of up to 1.5 times the rated load．If no overload reserves are required in continous operation，the inverters can be operated continuously with increased output power（please refer to the Technical Data）．

2.3 Motor selection for MOVITRAC ${ }^{\circledR}$ 31C...-233

	$P_{\text {max }}$ for ope	with MO	${ }^{\oplus} 31 C . . .233$	For use with MOVITRAC ${ }^{\oplus 1)}$ Type
Connection	YY or $\Delta / 230 \mathrm{~V}_{\text {AC }}$			
Cooling	fan cooled		blower	
$\mathrm{f}_{\text {min }}-\mathrm{f}_{\text {max }}(\mathrm{Hz}$)	6-60	6-90	3-60	
Speed control range	10:1	15:1	$\geq 20: 1$	
Motor frame size	$\begin{gathered} \mathrm{P}=\mathrm{P}_{\text {reduced }} \\ {[\mathrm{kW}(\mathrm{HP})]} \end{gathered}$		$\begin{gathered} \mathrm{P}=\mathrm{P}_{\mathrm{n}} \\ {[\mathrm{~kW}(\mathrm{HP})]} \end{gathered}$	
DT71 D4	0.25 (0.33)		0.37 (0.5)	31C005-233
DT80 K4	0.37 (0.5)		0.55 (0.75)	31C008-233
DT80 N4	0.55 (0.75)		0.75 (1.0)	31C008-233
DT90 S4	0.75 (1.0)		1.1 (1.5)	31C011/015-233
DT90 L4	1.1 (1.5)		1.5 (2.0)	31C015-233
DT100 LS4	1.5 (2.0)		2.2 (3.0)	31C022-233
DT100 L4	2.2 (3.0)		3.7 (5.0)	31C037-233
DV132 S4	3.7 (5.0)		5.5 (7.5)	31C055-233
DV132 M4	5.5 (7.5)		7.5 (10.0)	31C075-233
DV160 M4	7.5 (10.0)			

1) The above units have a short-time overload rating of up to 1.5 times the rated load. If no overload reserves are required in continuous operation, the inverters can be operated continuously with increased output power (please refer to the Technical Data).

2.4 Inverter connection

2.4.1 Connection of power section and brake

01553AEN
Fig. 63: Wiring diagram for the power section and brake connection
A separate supply lead is required for the connection of the brake rectifier; supply from the motor voltage is not permissible!

Brake must always be actuated via TL. 61 not from a PLC!

The binary output, TL. 61 "/Brake", is implemented as a relay driver with a control voltage of +24 V3.6 W/max. 150 mA . This allows a power contactor to be directly controlled with $24 \mathrm{~V}_{\text {DC }}$ coil voltage which then switches the brake.
On hoists, the brake must always be applied by simultaneous switch-off in the AC and DC circuits. Installment of the brake rectifier in the switch cabinet requires that the connection cables between the brake rectifier and the brake are routed separately from the other power cables. The cables may only be routed together if the other cables are shielded. For brakes without BG/BGE brake rectifiers, the applicable connection regulations must be observed.
The brake resistors in BW100.003 and BW200-003 flat-pack form can be installed in the unit in size 0 of the MOVITRAC ${ }^{\ominus} 31 \mathrm{C}$ (MC31C 005/007/011/014).
Comprehensive information on the SEW brake system is contained in the "Geared Motors" catalog, order number 0919 5017, and also in "Drive Engineering - Practical Implementation, Vol. 4", order number 09202218.
SEW brakes are DC-operated disc brakes which are released electro-magnetically and applied by spring force. A brake rectifier provides the brake with direct current.

2.4.2 Connection of electronic terminals and functional description

1) Jumper, factory installed; connects reference of the binary inputs with units internal ground.
2) After installing an option in slot X21, the terminals 48/49/60/30 in the basic unitare not available.
$\mathrm{TL.0} \perp \quad \mathrm{OV} 10$ (Reference potential 10V, analog signals)
TL. $30 \perp$ 0V24 (Reference potential 24V, binary signals)
Strip \perp Protective earth conductor (Shield)
Fig. 64: Wiring diagram for the processor pcb

Functional description of the terminals

Travel diagram

The travel diagram below shows how the enable and CW (CCW) commands for the drive are implemented with the factory settings and appropriate wiring of terminals 41 (CW), 42 (CCW) and 43 (enable). The output frequency is set with an analog setpoint $0 . . .10 \mathrm{~V}$ to TL .34 , setpoint input. The binary output TL. 61 (brake released) is used for actuating the brake contactor K12.

Fig. 65: Travel diagram

2.4.3 Power and motor cables

- If more than four inverters are operated on a single input supply contactor (sized for the total current), then connect a 3-phase line choke ($\mathrm{V}_{\text {short-circait }}=4 \%$) to limit the inrush current.
- Power cable: size cable cross-section based on the input current I_{in} at rated load (\rightarrow Technical data) in accordance with applicable regulations (e.g. DIN VDE 0100, Part 523).
- PE input connection: if the power cable cross-section < $10 \mathrm{~mm}^{2}$ (AWG 8), run a second PE conductor with the cross-section of the power cable parallel to the PE conductor via separate terminals, or use a PE conductor cross-section of $10 \mathrm{~mm}^{2} \mathrm{Cu}$. For power cable cross-sections $\geq 10 \mathrm{~mm}^{2}$ (AWG 8) use a Cu PE conductor with the same cross-section as the power cable. Earth-leakage current > 3.5 mA can be present.
- Motor cable: size the cable cross-section based on the output rated current $\mathrm{I}_{\text {rated }}$ (Technical data) in accordance with the applicable regulations.
- Install the input fuses at the beginning of the power cable, directly after the busbar junction (wiring diagram: Sec. 2.5: F11/F12/F13). Use fuse types as per DIN VDE 0100 Part 430 (D, D0, HRC or power circuit-breakers) or UL class $\mathrm{J}_{\text {fuses }}$. Select fuses to ensure proper protection of the power cable.
For multi-core PVC-sheathed copper cables, which run in cable ducts, we recommend the following cross-sections and fuse ratings:
MOVITRAC ${ }^{\circledR}$ 31C...-503 Metric

MOVITRAC ${ }^{\circledR}$ type for $\mathrm{V}_{\text {in }}=400 \mathrm{~V}_{\mathrm{AC}}$	$\begin{aligned} & \hline 31 C 005 \\ & 503-4-00 \end{aligned}$	$\begin{aligned} & 31 C 007 \\ & 503-4-00 \end{aligned}$	$\begin{aligned} & 31 \mathrm{CO11} \\ & 503-4-00 \end{aligned}$	$\begin{aligned} & 31 \mathrm{CO14} \\ & 503-4-00 \end{aligned}$	$\begin{aligned} & \hline 31 C 008 \\ & 503-4-00 \end{aligned}$	$\begin{array}{\|l\|} \hline 31 C 015 \\ 503-4-00 \end{array}$	$\begin{aligned} & 31 C 022 \\ & 503-4-00 \end{aligned}$	$\begin{aligned} & 31 \mathrm{CO3O} \\ & 503-4-00 \end{aligned}$	$\begin{aligned} & \hline 31 C 040 \\ & 503-4-00 \end{aligned}$
Fuses F11/F12/F13 I_{N}	10A	10A	10A	10A	10A	16A	16A	16A	16A
Power cable, TL.1/2/3	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (AWG16) } \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (AWG16) } \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (AWG16) } \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (AWG16) } \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (AWG16) } \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (AWG16) } \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (AWG16) } \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (AWG16) } \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (AWG16) } \end{aligned}$
$\begin{array}{ll}\text { PE conductor } & {\left[\mathrm{mm}^{2}\right]} \\ & \text { or }\end{array}$	$\begin{aligned} & \hline 2 \times 1.5 \\ & \text { (AWG16) } \\ & 1 \times 10 \\ & \text { (AWG8) } \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \times 1.5 \\ & \text { (AWG16) } \\ & 1 \times 10 \\ & \text { (AWG8) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2 \times 1.5 \\ & \text { (AWG16) } \\ & 1 \times 10 \\ & \text { (AWG8) } \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \times 1.5 \\ & \text { (AWG16) } \\ & 1 \times 10 \\ & \text { (AWG8) } \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \times 1.5 \\ & \text { (AWG16) } \\ & 1 \times 10 \\ & \text { (AWG8) } \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \times 1.5 \\ & \text { (AWG16) } \\ & 1 \times 10 \\ & \text { (AWG8) } \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \times 1.5 \\ & (\text { AWG16) } \\ & 1 \times 10 \\ & \text { (AWG8) } \end{aligned}$	$\begin{aligned} & 2 \times 1.5 \\ & \text { (AWG16) } \\ & 1 \times 10 \\ & \text { (AWG8) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2 \times 1.5 \\ & \text { (AWG16) } \\ & 1 \times 10 \\ & \text { (AWG8) } \\ & \hline \end{aligned}$
Motor cable, TL. 4/5/6	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (AWG16) } \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (AWG16) } \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (AWG16) } \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (AWG16) } \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (AWG16) } \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (AWG16) } \end{aligned}$	$1.5 \mathrm{~mm}^{2}$ (AWG16)	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (AWG16) } \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (AWG16) } \end{aligned}$
Inverter terminal crosssection TL.1-TL. 9	$\begin{aligned} & \left.6 \mathrm{~mm}^{2 *}\right) \\ & (\text { (AWG10) } \end{aligned}$	$\begin{aligned} & 6 \mathrm{~mm}^{\star}{ }^{\prime} \\ & \text { (AWG10) } \\ & \hline \end{aligned}$	$\begin{aligned} & 6 \mathrm{~mm}^{2 *} \\ & \text { (AWG10) } \\ & \hline \end{aligned}$	$\begin{aligned} & 6 \mathrm{~mm}^{2 *} \\ & (\text { AWG10) } \\ & \hline \end{aligned}$	$\begin{aligned} & \left.4 \mathrm{~mm}^{2}\right) \\ & (\text { (AWG10) } \end{aligned}$	$\begin{aligned} & 4 \mathrm{~mm}^{\star}{ }^{\prime} \\ & \text { (AWG10) } \end{aligned}$	$\begin{aligned} & 4 \mathrm{~mm}^{2 *} \\ & (\text { AWG10 }) \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \mathrm{~mm}^{2 *} \\ & (\text { AWG10 }) \\ & \hline \end{aligned}$	$\begin{aligned} & 6 \mathrm{~mm}^{2 *} \\ & \text { (AWG10) } \end{aligned}$
MOVITRAC ${ }^{\circledR}$ type for $\mathrm{V}_{\text {in }}=400 \mathrm{~V}_{\mathrm{AC}}$	$\begin{aligned} & \hline 31 C 055 \\ & 503-4-00 \end{aligned}$	$\begin{aligned} & 31 \mathrm{CO75} \\ & 503-4-00 \end{aligned}$	$\begin{aligned} & \hline 31 C 110 \\ & 503-4-00 \end{aligned}$	$\begin{aligned} & \hline 31 C 150 \\ & 503-4-00 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 31 C 220 \\ & 503-4-00 \end{aligned}$	$\begin{array}{\|l\|} \hline 31 C 300 \\ 503-4-00 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 31 C 370 \\ 503-4-00 \end{array}$	$\begin{aligned} & 31 C 450 \\ & 503-4-00 \end{aligned}$	
Fuses F11/F12/F13 I_{N}	16A	20A	25A	50A	50A	80A	100A	100A	
Power cable, TL. 1/2/3	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (AWG16) } \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \\ & \text { (AWG12) } \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \\ & \text { (AWG12) } \end{aligned}$	$\begin{aligned} & 4 \mathrm{~mm}^{2} \\ & \text { (AWG10) } \end{aligned}$	$10 \mathrm{~mm}^{2}$ (AWG8)	$16 \mathrm{~mm}^{2}$ (AWG6)	$25 \mathrm{~mm}^{2}$ (AWG4)	$\begin{aligned} & 25 \mathrm{~mm}^{2} \\ & \text { (AWG4) } \end{aligned}$	
PE conductor $\left[\mathrm{mm}^{2}\right]$ or	2x1.5 (AWG16) 1x10 (AWG8)	$\begin{aligned} & 2 \times 2.5 \\ & \text { (AWG12) } \\ & 1 \times 10 \\ & \text { (AWG8) } \\ & \hline \end{aligned}$	2x2.5 (AWG12) 1x10 (AWG8)	$\begin{aligned} & 2 \times 4 \\ & \text { (AWG10) } \\ & 1 \times 10 \\ & \text { (AWG8) } \\ & \hline \end{aligned}$	1×10 (AWG8)	$\begin{aligned} & 1 \times 16 \\ & \text { (AWG6) } \end{aligned}$	1×25 (AWG4)	$\begin{aligned} & \hline 1 \times 25 \\ & (A W G 4) \end{aligned}$	
Motor cable, TL. 4/5/6	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (AWG16) } \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \\ & \text { (AWG12) } \end{aligned}$	$6 \mathrm{~mm}^{2}$ (AWG10)	$\begin{aligned} & 6 \mathrm{~mm}^{2} \\ & \text { (AWG10) } \end{aligned}$	$\begin{aligned} & 10 \mathrm{~mm}^{2} \\ & \text { (AWG8) } \end{aligned}$	$\begin{aligned} & 16 \mathrm{~mm}^{2} \\ & \text { (AWG6) } \end{aligned}$	$\begin{aligned} & 25 \mathrm{~mm}^{2} \\ & \text { (AWG4) } \end{aligned}$	$\begin{aligned} & 35 \mathrm{~mm}^{2} \\ & \text { (AWG2) } \end{aligned}$	
Inverter terminal crosssection TL.1-TL. 9	$\begin{aligned} & 6 \mathrm{~mm}^{2 *} \\ & (\text { AWG10) } \\ & \hline \end{aligned}$	$\begin{aligned} & 6 \mathrm{~mm}^{2 *} \\ & (\mathrm{AWG10)} \\ & \hline \end{aligned}$	$\begin{aligned} & \left.25 \mathrm{~mm}^{2 *}\right) \\ & (\text { AWG4) } \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \mathrm{~mm}^{2}{ }^{*} \\ & (\text { AWG4) } \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \mathrm{~mm}^{2} \text {) } \\ & \text { (AWG4) } \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \mathrm{~mm}^{2} \text {) } \\ & (\mathrm{AWG2}) \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \mathrm{~mm}^{2} \text {) } \\ & (\mathrm{AWG} 2) \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \mathrm{~mm}^{*} \text {) } \\ & (\mathrm{AWG} 2) \\ & \hline \end{aligned}$	

${ }^{*}$) with open cable lug
MOVITRAC ${ }^{\circledR}$ 31C...-233 Metric

MOVITRAC ${ }^{\circledR}$ type at $V_{\text {in }}=230 V_{\text {AC }}$	$\begin{aligned} & \hline 31 C 005 \\ & 233-4-00 \end{aligned}$	$\begin{aligned} & \hline 31 C 011 \\ & 233-4-00 \end{aligned}$	$\begin{array}{\|l\|} \hline 31 C 008 \\ 233-4-00 \end{array}$	$\begin{aligned} & \hline 31 C 015 \\ & 233-4-00 \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} 31 C 022 \\ 233-4-00 \end{array} \end{aligned}$	$\begin{aligned} & 31 \mathrm{CO37} \\ & 233-4-00 \end{aligned}$	$\begin{aligned} & \hline 31 C 0552 \\ & 233-4-00 \end{aligned}$	$\begin{aligned} & \hline 31 C 075 \\ & 233-4-00 \end{aligned}$
Fuses F11/F12/F13 I_{N}	10A	10A	10A	10A	15A	20A	25A	50A
Power cable, TL. 1/2/3	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (AWG16) } \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (AWG16) } \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (AWG16) } \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (AWG16) } \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (AWG16) } \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \\ & \text { (AWG12) } \end{aligned}$	$\begin{aligned} & 4 \mathrm{~mm}^{2} \\ & \text { (AWG10) } \end{aligned}$	$\begin{aligned} & 10 \mathrm{~mm}^{2} \\ & \text { (AWG8) } \end{aligned}$
PE conductor $\left[\mathrm{mm}^{2}\right]$ or	$\begin{aligned} & 2 \times 1.5 \\ & \text { (AWG16) } \\ & \text { 1x10 (AWG8) } \end{aligned}$	2×1.5 (AWG16) 1x10 (AWG8)	2x1.5 (AWG16) 1x10 (AWG8)	$\begin{aligned} & 2 \times 1.5 \\ & \text { (AWG16) } \\ & \text { 1x10 (AWG8) } \end{aligned}$	2×1.5 (AWG16) 1x10 (AWG8)	$\begin{aligned} & 2 \times 2.5 \\ & \text { (AWG12) } \\ & 1 \times 10 \text { (AWG8) } \end{aligned}$	$\begin{aligned} & 2 \times 4 \\ & \text { (AWG10) } \\ & 1 \times 10 \text { (AWG8) } \end{aligned}$	$\begin{aligned} & 1 \times 10 \\ & (\text { AWG8) } \end{aligned}$
Motor cable, TL. 3/5/6	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (AWG16) } \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (AWG16) } \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (AWG16) } \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (AWG16) } \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (AWG16) } \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \\ & \text { (AWG12) } \end{aligned}$	$\begin{aligned} & 4 \mathrm{~mm}^{2} \\ & \text { (AWG10) } \end{aligned}$	$\begin{aligned} & 10 \mathrm{~mm}^{2} \\ & \text { (AWG8) } \end{aligned}$
Inverter terminal crosssection TL.1-TL. 9	$\begin{aligned} & 6 \mathrm{~mm}^{2} \\ & \text { (AWG10) } \end{aligned}$	$\begin{aligned} & 6 \mathrm{~mm}^{2} \\ & \text { (AWG10) } \end{aligned}$	$\begin{aligned} & 4 \mathrm{~mm}^{2} \\ & \text { (AWG10) } \end{aligned}$	$\begin{aligned} & 4 \mathrm{~mm}^{2} \\ & \text { (AWG10) } \end{aligned}$	$\begin{aligned} & 4 \mathrm{~mm}^{2} \\ & \text { (AWG10) } \end{aligned}$	$\begin{aligned} & 6 \mathrm{~mm}^{2} \\ & \text { (AWG10) } \end{aligned}$	$\begin{aligned} & 25 \mathrm{~mm}^{2} \\ & (\mathrm{AWG} 4) \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \mathrm{~mm}^{2} \\ & \text { (AWG4) } \\ & \hline \end{aligned}$

Adhere to local and system-specific regulations and standards when selecting cross-sections and fuse ratings.

MOVITRAC ${ }^{\circledR}$ 31C...-503 to USA NEC:

MOVITRAC ${ }^{\circledR}$ Type for $\mathrm{V}_{\text {in }}=460 \mathrm{~V}_{\mathrm{AC}}$		$\begin{aligned} & \hline 31 C 005- \\ & 503-4-00 \end{aligned}$	$\begin{aligned} & \hline 31 C 007- \\ & 503-4-00 \end{aligned}$	$\begin{array}{\|l\|} \hline 31 C 011- \\ 503-4-00 \end{array}$	$\begin{array}{\|l\|} \hline 31 C 014- \\ 503-4-00 \end{array}$	$\begin{array}{\|l\|} \hline 31 C 008- \\ 503-4-00 \end{array}$	$\begin{aligned} & 31 \mathrm{CO15-} \\ & 503-4-00 \end{aligned}$	$\begin{aligned} & 31 \mathrm{CO22-} \\ & 503-4-00 \end{aligned}$	$\begin{aligned} & 31 \mathrm{CO3O} \\ & 503-4-00 \end{aligned}$	$\begin{aligned} & 31 \mathrm{CO40} \\ & 503-4-00 \end{aligned}$
Fuses F11/F12/F13	I_{N} [A]	3	4	4.5	7	4	7	10	15	17.5
Power cable TL. 1/2/3	AWG	14	14	14	14	14	14	14	14	12
PE conductor	AWG	14	14	14	14	14	14	14	14	12
Motor cable 4/5/6	AWG	14	14	14	14	14	14	14	14	12
Inverter terminal cross TL. 1 - TL. 9	section AWG	10*)	10*)	10*)	10*)	12*)	12*)	12*)	12*)	10*)

MOVITRAC ${ }^{\circledR}$ Type for $V_{\text {in }}=460 V_{\text {AC }}$		$\begin{array}{\|l\|} \hline 31 C 055- \\ 503-4-00 \end{array}$	$\begin{aligned} & \hline 31 C 075- \\ & 503-4-00 \end{aligned}$	$\begin{aligned} & \hline 31 C 110- \\ & 503-4-00 \end{aligned}$	$\begin{aligned} & 31 C 150- \\ & 503-4-00 \end{aligned}$	$\begin{aligned} & 31 C 220- \\ & 503-4-00 \end{aligned}$	$\begin{aligned} & 31 C 300- \\ & 503-4-00 \end{aligned}$	$\begin{array}{\|l\|} \hline 31 C 370- \\ 503-4-00 \end{array}$	$\begin{aligned} & 31 C 450- \\ & 503-4-00 \end{aligned}$
Fuses F11/F12/F13	$\mathrm{I}_{\mathrm{N}}[\mathrm{A}]$	25	30	40	60	80	110	125	125
Power cable TL. 1/2/3	AWG	10	10	8	6	4	3	2	2
PE conductor	AWG	10	10	10	10	8	8	6	6
Motor cable 4/5/6	AWG	10	10	8	6	4	3	2	2
Inverter terminal cross TL. 1 -TL. 9	section AWG	10*)	10*)	4	4	4	2	2	2

*) with open cable lug

MOVITRAC ${ }^{\circledR}$ 31C...-233 to USA NEC:

MOVITRAC ${ }^{\circledR}$ Type for $\mathrm{V}_{\text {in }}=\mathbf{2 3 0} \mathrm{V}_{\mathrm{AC}}$		$\begin{array}{\|l\|} \hline 31 C 005- \\ 233-4-00 \end{array}$	$\begin{aligned} & \hline 31 C 011- \\ & 233-4-00 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 31 C 008- \\ & 233-4-00 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 31 C 015- \\ & 233-4-00 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 31 C 022- \\ & 233-4-00 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 31 C 037- \\ & 233-4-00 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 31 C 0552- \\ & 233-4-00 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 31 C 075- \\ & 233-4-00 \\ & \hline \end{aligned}$
Fuses F11/F12/F13	$\mathrm{I}_{N}[\mathrm{~A}]$	5.6	8	6.25	15	15	30	40	60
Power cable TL. 1/2/3	AWG	14	14	14	14	14	10	8	6
PE conductor	AWG	14	14	14	14	14	10	10	10
Motor cable 4/5/6	AWG	14	14	14	14	14	10	8	6
Inverter terminal cross TL. 1 -TL. 9	section AWG	10*)	10*)	12*)	12*)	12*)	10*)	4	4

*) with open cable lug
Adhere to local and system-specific regulations and standards when selecting cross-sections and fuse ratings.

- The maximum motor cable length is dependent on the following factors:
- cable type
- connection of an HF.. output filter
- selected PWM frequency (P325/345)
- and voltage drop on the cable.

The values in the following tables provide approximations:
MOVITRAC ${ }^{\circledR}$ 31C...-503 without HF...*) output filter

$\begin{aligned} & \text { MOVITRAC }{ }^{\circledR} \text { type } \\ & \text { for } V_{\text {in }}=400 V_{\text {AC }} \end{aligned}$	$31 \mathrm{COO5}$	$31 \mathrm{C007}$	$31 \mathrm{C011}$	31C014	31C008	$31 \mathrm{C015}$	$31 \mathrm{CO22}$	$31 \mathrm{CO30}$	$31 C 040$
	recommended max. motor cable length [m (ft)]								
	shielded cables / without HF..output filter *)								
PWM frequency 4 kHz	100(330)	100(330)	100(330)	100(330)	120(396)	120(396)	200(660)	250(825)	300(990)
(P325/345) 8 kHz	70(231)	70(231)	70(231)	70(231)	80(264)	80(264)	120(396)	150(495)	250(825)
12 kHz	50(165)	50(165)	50(165)	50(165)	50(165)	50(165)	80(264)	120(396)	200(660)
16 kHz	40(132)	40(132)	40(132)	40(132)	40(132)	40(132)	60(198)	100(330)	150(495)
unshielded cables / without HF..output filter *)									
PWM frequency 4 kHz	200(660)	200(660)	200(660)	200(660)	360(1188)	360(1188)	600(1980)	750(2475)	900(2970)
(P325/345) 8 kHz	140(462)	140(462)	140(462)	140(462)	240(792)	240 (792)	360(1188)	450(1485)	750(2475)
12 kHz	100(330)	100(330)	100(330)	100(330)	150(495)	150 (495)	240 (792)	360(1188)	600(1980)
16 kHz	80(264)	80(264)	80(264)	80(264)	120(396)	120 (396)	180 (594)	300 (990)	450(1485)

[^5]| MOVITRAC ${ }^{\circledR}$ type for $V_{\text {in }}=400 V_{\text {AC }}$ | 31 C055 | 31C075 | 31 C 110 | 31C150 | $31 \mathrm{C220}$ | $31 \mathrm{C300}$ | $31 \mathrm{C370}$ | 31C450 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | recommended max. motor cable length [m (ft)] | | | | | | | |
| | shielded cables / without HF..output filter *) | | | | | | | |
| PWM frequency 4 kHz | 300 (990) | 400(1320) | 400(1320) | 400(1320) | 400(1320) | 400(1320) | 400(1320) | 400(1320) |
| (P325/345) 8 kHz | 250 (825) | 300 (990) | 300 (990) | 300 (990) | 300 (990) | 300 (990) | 300 (990) | 300 (990) |
| 12 kHz | 200 (660) | 250 (825) | 250 (825) | 250 (825) | 250 (825) | 250 (825) | 250 (825) | 250 (825) |
| 16 kHz | 150 (495) | 200 (660) | 200 (660) | 200 (660) | 200 (660) | 200 (660) | 200 (660) | 200 (660) |
| unshielded cables / without HF..output filter *) | | | | | | | | |
| PWM frequency 4 kHz | 900(2970) | 1200(3960) | 1200(3960) | 1200(3960) | 1200(3960) | 1200(3960) | 1200(3960) | 1200(3960) |
| (P325/345) 8 kHz | 750(2475) | 900(2970) | 900(2970) | 900(2970) | 900(2970) | 900(2970) | 900(2970) | 900(2970) |
| 12 kHz | 600(1980) | 750(2475) | 750(2475) | 750(2475) | 750(2475) | $750(2475)$ | 750(2475) | 750 (2475) |
| 16 kHz | 450(1485) | 600(1980) | 600(1980) | 600(1980) | 600(1980) | 600(1980) | 600(1980) | 600(1980) |

*) If an HF.. output filter is used, then the cable length is not determined by these limits, but solely by the voltage drop on the motor cable.

If several motors are operated from one frequency inverter at the same time and no HF.. output filter is used, system-specific conditions must be taken into account.

MOVITRAC ${ }^{\circledR}$ 31C...-233 without HF... ${ }^{*}$) output filter

MOVITRAC ${ }^{\circledR}$ type for $V_{\text {in }}=400 V_{\text {AC }}$			$\begin{aligned} & 31 \mathrm{COOR-} \\ & 233-4-00 \end{aligned}$	$\begin{aligned} & \hline 31 C 015- \\ & 233-4-00 \end{aligned}$	$\begin{aligned} & \hline 31 C 022- \\ & 233-4-00 \end{aligned}$	$\begin{aligned} & \hline 31 C 037- \\ & 233-4-00 \end{aligned}$		
	recommended max. motor cable length [m (ft)]							
PWM frequency 4 kHz (P325/345) 8 kHz	shielded cables / without HF..output filter *)							
	100	100(330)	120(396)	120(396)	200(660)	250(825))	
	70(231)	70(231)	80(264)	80(264)	120(396)	150(495)	250(825)	250(825)
12 kHz	50(165)	50(165)	50(165)	50(165)	80(264)	120(396)	200(660)	200(660)
16 kHz	40(132)	40(132)	40(132)	40(132)	60(198)	100(330)	150(495)	150(495)
unshielded cables / without HF..output filter *)								
PWM frequency 4 kHz	200(660)	200(660)	360(1188)	360(1188)	600(1980)	750(2475)	900(2970)	900(2970)
(P325/345) 8 kHz	140(462)	140(462)	240 (792)	240 (792)	360(1188)	450(1485)	750(2475)	750(2475)
12 kHz	100(330)	100(330)	150 (495)	150 (495)	240 (792)	360(1188)	600(1980)	600(1980)
16 kHz	80(264)	80(264)	120 (396)	120 (396)	180 (594)	300 (990)	450(1485)	450(1485)

*) To MOVITRAC ${ }^{\circledR} 31 \mathrm{C} . . .-233$, no output filter HF...-... may be connected.

The cross-section of the motor cable should be chosen so that the voltage drop on the motor cable is as low as possible.
Too great a voltage drop can mean that the full motor torque is not reached in certain operating conditions.

The voltage drop can be determined from the following table (in the case of shorter cables the voltage drop can be calculated in proportion to the length).

Cable cross-section	$$														
Copper	Voltage-drop [$\Delta \mathrm{V}$] for a length $=100 \mathrm{~m}(\mathbf{3 3 0} \mathrm{ft})$ and $\vartheta=70^{\circ} \mathrm{C}$														
$1.5 \mathrm{~mm}^{2}$ (AWG16)	5.3 V	8 V	10.6 V	13.3 V	17.3 V	21.3 V	*)	*)	*)	*)	*)	*)	*)	*)	${ }^{*}$)
$2.5 \mathrm{~mm}^{2}$ (AWG12)	3.2 V	4.8 V	6.4 V	8.1 V	10.4 V	12.8 V	16 V	*)	*)	*)	*)	*)	*)	*)	${ }^{*}$)
$4 \mathrm{~mm}^{2}$ (AWG10)	1.9 V	2.8 V	3.8 V	4.7 V	6.5 V	8.0 V	10 V	12.5 V	*)	*)	*)	*)	*)	*)	*)
$6 \mathrm{~mm}^{2}$ (AWG10)					4.4 V	5.3 V	6.4 V	8.3 V	9.9 V	*)	*)	*)	*)	*)	*)
$10 \mathrm{~mm}^{2}$ (AWG8)						3.2 V	4.0 V	5.0 V	6.0 V	8.2 V	10.2 V	*)	*)	*)	*)
$16 \mathrm{~mm}^{2}$ (AWG6)								3.3 V	3.9 V	5.2 V	6.5 V	7.9 V	10 V	*)	${ }^{*}$)
$25 \mathrm{~mm}^{2}$ (AWG4)									2.5 V	3.3 V	4.1 V	5.1 V	6.4 V	8.0 V	*)
$35 \mathrm{~mm}^{2}$ (AWG2)											2.9 V	3.6 V	4.6 V	5.7 v	7.2 V

[^6]| Cable cross section [AWG] | Current load I = [$\mathrm{Ac}_{\text {AC }}$] | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 4 | 6 | 8 | 10 | 13 | 16 | 20 | 25 | 30 | 40 | 50 | 63 | 80 | 100 | 125 |
| Copper | Voltage drop Δ [V] for a length $=100 \mathrm{~m}(\mathbf{3 3 0} \mathrm{ft})$ and $\vartheta=70^{\circ} \mathrm{C}$ | | | | | | | | | | | | | | |
| 16 | 7.0 | 10.5 | *) | *) | *) | *) | *) | *) | ${ }^{*}$) | *) | ${ }^{*}$) | *) | ${ }^{*}$) | *) | *) |
| 14 | 4.2 | 6.3 | 8.4 | 10.5 | 13.6 | *) | *) | *) | *) | *) | *) | *) | ${ }^{*}$) | *) | *) |
| 12 | 2.6 | 3.9 | 5.2 | 6.4 | 8.4 | 10.3 | 12.9 | *) | *) | *) | ${ }^{*}$) | *) | *) | *) | ${ }^{*}$) |
| 10 | | | | | 5.6 | 6.9 | 8.7 | 10.8 | 13.0 | *) | *) | *) | *) | *) | *) |
| 8 | | | | | | 4.5 | 5.6 | 7.0 | 8.4 | 11.2 | *) | *) | *) | *) | *) |
| 6 | | | | | | | | 4.3 | 5.1 | 6.9 | 8.6 | 10.8 | 13.7 | *) | *) |
| 4 | | | | | | | | | 3.2 | 4.3 | 5.4 | 6.8 | 8.7 | 10.8 | 13.5 |
| 3 | | | | | | | | | 2.6 | 3.4 | 4.3 | 5.1 | 6.9 | 8.6 | 10.7 |
| 2 | | | | | | | | | | | 3.4 | 3.6 | 5.4 | 6.8 | 8.5 |

${ }^{*}$) More than 3% voltage drop in reference to $\mathrm{V}_{\mathrm{IN}}=460 \mathrm{~V}_{\mathrm{AC}}$.
If the options line choke and output filter are used, the resulting voltage drops are to be considered, too, and added to the voltage drop on the motor cable:

- Line choke: <1 \%
- Output filter: $\quad<6.5 \%$ at 400 V and $<4 \%$ at 500 V
- Mains input filter: < 0.1% (therefore negligible)
- EMC module: $<0.1 \%$ (therefore negligible)
at rated current and $\mathrm{f}_{\text {outp }}=50 \mathrm{~Hz}$ related to the corresponding rated voltage

When two motors are operated alternately off one inverter and the function "Parameter switchover" is used, a changeover contactor must be provided for each of the two motor cables. Changeover contactors may only be operated when the inverter is not enabled!

Only a resistive/ inductive load (motor) may be operated at the output, no capacitive load!
For jogging, use the commands clockwise/counterclockwise or enable (rapid stop).
The input supply contactor K 11 cannot be used for jogging, but only for switching the inverter on and off!

Recommendation: After power-down, wait until the LED display has gone off completely before powering the inverter up again!

Motor cables for group drives

The permissible length of the motor cables for group drives is calculated as follows:

$$
\begin{array}{lll}
I_{\text {tot }}=\frac{I_{\text {max }}}{n} & I_{\text {tot }} & =\text { sum of the motor cable lengths connected in parallel } \\
I_{\max } & =\text { recommended maximum motor cable length acc. to table } \\
n & =\text { number of motors connected in parallel }
\end{array}
$$

Recommendation:

- Use of an HF...-... output filter for group drives. This suppresses the recharging current in the motor cable. The sum of the motor rated currents must not exceed the rated throughput current of the output filter.
- Use unshielded motor cables only.
- The motors of a group must not differ by more than one size from each other.

2.4.4 UL-compliant installation

For UL-compliant installation, please observe the following instructions:

- Only copper cables in the following temperature range may be used as connection leads:
- for MOVITRAC ${ }^{\circledR} 31 \mathrm{C} 005$... 300 : temperature range $60 / 75^{\circ} \mathrm{C}$.
- for MOVITRAC ${ }^{\circledR} 31 \mathrm{C} 370 / 450$: temperature range $75 / 90^{\circ} \mathrm{C}$.
- The permissible tightening torque for the respective MOVITRAC ${ }^{\circledR}$ power terminals is as follows:
for size $0 \rightarrow 1.5 \mathrm{Nm}$ ($13.3 \mathrm{lb} . \mathrm{in}$)
for size $1 \rightarrow 0.6 \mathrm{Nm}$ ($5.3 \mathrm{lb} . \mathrm{in}$)
for size $2 \rightarrow 1.5 \mathrm{Nm}$ ($13.3 \mathrm{lb} . \mathrm{in}$)
for size $3 \rightarrow 3.5 \mathrm{Nm}$ (31 lb.in)
for size $4 \rightarrow 3.5 \mathrm{Nm}$ ($31 \mathrm{lb} . i n$)
- MOVITRAC ${ }^{\circledR 31 C ~ i n v e r t e r s ~ a r e ~ d e s i g n e d ~ f o r ~ o p e r a t i o n ~ o n ~ v o l t a g e ~ s y s t e m s ~ w i t h ~ e a r t h e d ~ n e u t r a l ~}$ points (TN and TT systems) which can provide a maximum current according to the table below and have a maximum voltage of $240 \mathrm{~V}_{\text {AC }}$ for MOVITRAC ${ }^{\circledR} 31 \mathrm{C} . . .-233$ (230 V units) and $500 \mathrm{~V}_{\mathrm{AC}}$ for MOVITRAC® ${ }^{\circledR}$ 31C...-503 (400/500 V units). The performance data of fuses must not exceed the values given in the following tables .

230 V units:

MOVITRAC ${ }^{\text {® 31C...-233 }}$		Max. current	Max. supply voltage	Fuses (max.)
005/011	(Size 0)	$5000 \mathrm{~A}_{\text {AC }}$	$240 \mathrm{~V}_{\text {AC }}$	$20 \mathrm{~A} / 600 \mathrm{~V}$
008/015/022	(Size 1)	$5000 \mathrm{~A}_{\text {AC }}$	$240 \mathrm{~V}_{\text {AC }}$	$32 \mathrm{~A} / 600 \mathrm{~V}$
037	(Size 2)	$5000 \mathrm{~A}_{\text {AC }}$	$240 \mathrm{~V}_{\text {AC }}$	$63 \mathrm{~A} / 600 \mathrm{~V}$
055/075	(Size 3)	$5000 \mathrm{~A}_{\text {AC }}$	$240 \mathrm{~V}_{\text {AC }}$	$110 \mathrm{~A} / 600 \mathrm{~V}$

400/500 V units:

MOVITRAC ${ }^{\circledR}$ 31C..-503		Max. current	Max. suppley voltage	Fuses (max.)
$\mathbf{0 0 5 / 0 0 7 / 0 1 1 / 0 1 4 ~}$	(Size 0)	$5000 \mathrm{~A}_{\mathrm{AC}}$	$500 \mathrm{~V}_{\mathrm{AC}}$	$16 \mathrm{~A} / 600 \mathrm{~V}$
$\mathbf{0 0 8 / 0 1 5 / 0 2 2 / 0 3 0}$	(Size 1)	$5000 \mathrm{~A}_{\mathrm{AC}}$	$500 \mathrm{~V}_{\mathrm{AC}}$	$30 \mathrm{~A} / 600 \mathrm{~V}$
$\mathbf{0 4 0 / 0 5 5 / 0 7 5}$	(Size 2)	$5000 \mathrm{~A}_{\mathrm{AC}}$	$500 \mathrm{~V}_{\mathrm{AC}}$	$63 \mathrm{~A} / 600 \mathrm{~V}$
$\mathbf{1 1 0 / 1 5 0 / 2 2 0}$	(Size 3)	$5000 \mathrm{~A}_{\mathrm{AC}}$	$500 \mathrm{~V}_{\mathrm{AC}}$	$175 \mathrm{~A} / 600 \mathrm{~V}$
$\mathbf{3 0 0 / 3 7 0 / 4 5 0}$	(Size 4)	$10000 \mathrm{~A}_{\mathrm{AC}}$	$500 \mathrm{~V}_{\mathrm{AC}}$	$400 \mathrm{~A} / 600 \mathrm{~V}$

- Only use tested units with a limited output voltage $\left(\mathrm{V}_{\max }=30 \mathrm{~V}_{\mathrm{DC}}\right)$ and limited output current ($1 \leq 8 \mathrm{~A}$) as an external $24 \mathrm{~V}_{\mathrm{DC}}$ voltage source.

Please note:

UL certification does not apply to operation with voltage power systems using a non-earthed star point (IT systems).

2.4.5 Electronic leads and signal generation

- The electronic terminals are suitable for cable cross-sections up to $1.5 \mathrm{~mm}^{2}$ or AWG\#16. Wiring for increased immunity is only possible with shielded leads (go-and-return leads in one shield). The shield should be earthed at both ends.
- Use setpoint potentiometer with $\mathrm{R}=5 \mathrm{k} \Omega$.
- Potentiometer setpoints are switched via the +10 V supply, not the wiper lead (\rightarrow Fig. 66).

Fig. 66
O0550AEN

- OV leads are, in principle, not switched for signal generation.

OV leads of several electrically connected units should not be looped from unit to unit, but wired in star-type configuration. That means:
a) Install the inverters in adjacent switch cabinet compartments, not far away from each other.
b) From a central point, run the OV leads (cross-section $1.5 \mathrm{~mm}^{2}$ or AWG \#16) to each unit on the shortest possible route.

- If coupling relays are used, they should be with encapsulated, dust-tight electronic contacts, which are suitable for switching low-level voltages (5-20 V) and currents ($0.1-20 \mathrm{~mA}$).
- Binary inputs and outputs

The binary inputs are electrically isolated by optocouplers. The binary outputs are short-cir-cuit-proof, but not external-voltage-proof. Connecting any external voltage source to the binary outputs can damage them!
Instead of using coupling relays, binary input commands can also be given directly as $0 / 1$ commands from the PLC (signal levels: Technical Data \rightarrow Sec. 1.5.6).

- The inverter starts a self-test (approx. 3.5 s), when connected to the supply system or the 24 V supply TL. 40 in the de-energized state. During the self-test time the measurement output TL. 65, the analog output signals TL. 38/39 (FEA 31C) and the binary output signals TL. 61/62 or TL. 63/64 (FEA 31C/FIO 31C) and TL. 69/70/71/72 (FIO 31C) have the level " 0 ".
- 24 V voltage supply on TL . X2:40

In accordance with the EN 61131-2 standard, $\mathrm{V}_{\mathrm{N}}=+24 \mathrm{~V}-10 \% /+20 \%$. In addition to the voltage tolerances given, a total AC component with a peak value of 5% of the rated voltage (+24 V) is permissible.

2.4.6 EMC-compliant installation

When installed in accordance with the instructions given for EMC-compliant installation, MOVITRAC®31C inverters meet the requirements for compliance with EMC Directive 89/336 EEC.

Interference immunity:

MOVITRAC® 31C inverters comply with all the immunity requirements of EN 50082-2. In combination with shielded leads even more stringent levels than those stipulated in the standard are met.

Interference emission:

Higher levels of interference are permitted for industrial environments. In an industrial environment one or several of the below listed measures may be done without, depending on supply system specifications and the specifics of the installation.

To meet emission limits for the residential, commercial and light industrial environment (class B limit to EN 55011) we recommend the following measures:

Alternative	Input side	Output side
$\mathbf{1}$	EF...-503 EMC module	EF...-503 EMC module
$\mathbf{2}$	NF...... mains filter	HD...output choke
$\mathbf{3}$	NF...... mains filter	shielded motor lead

Fig. 67: EMC-compliant installation (to class B limit)

01753AEN
Fig. 68: EMC-compliant installation (to class B limit)

2.4.7 NF...-... input filter connection

Fig. 69: Connection diagram for NF...-.. input filters

2.4.8 EF...-503 EMC module connection

00575AEN
Fig. 70: Connection diagram for EF...-503 EMC modules
The EMC module is mounted as a rear-mount filter between inverter and the back of the switching cabinet.

02694AXX
Fig. 71: EMC module as rear-mount filter

2.4.9 ND...-013 line choke connection

Fig. 72: Connection diagram for ND...-013 line chokes
2.4.10 HD... output choke connection

Fig. 73: Connection diagram for HD...

Wind all three output phases and PE together around the ferrite ring core.

00569AEN

2.4.11 Installation notes for HF...-... Output Filter

- Output filter only permissible for MOVIDRIVE® type MDF and for type MDV in VFC operating mode and MOVITRAC® 31C...-503. Do not connect output filters to MOVIDRIVE® type MDV in operating mode CFC and for type MDS as well as for MOVITRAC® ${ }^{\circledR}$ 31C...-233!
- Install the output filter in the vincity of the appropriate inverter, taking into account a clearance for ventilation of 100 mm (4 inch) above and below the output filter. A lateral clearance is not required.
- Limit the connection cable between inverter and output filter to the necessarily required length. Max. $1 \mathrm{~m}(3.3 \mathrm{ft})$ with unshielded cable and max. $10 \mathrm{~m}(33 \mathrm{ft})$ with shielded cable.
- When using an output filter, only an unshielded motor cable is to be connected. The use of a shielded motor cable causes an inadmissible heating up of the output filter.
- If a motor group is operated from one inverter, several motors can be connected to one output filter. The sum of the motor rated currents may not exceed the rated through current on the output filter.
- It is permissible to connect two output filters of the same type and rating to one inverter output in parallel to double the rated through current. All identical connections must be connected in parallel on the output filters.
- When operating the inverter with $\mathrm{f}_{\mathrm{PWM}}=4$ or 8 kHz the output filter connection V 5 must not be connected.

01582AEN
Fig. 74: Connection output filter HF...-503

Operation without $\mathrm{V}_{\text {DClink }}$ connection (standard):

- Permissible for all PWM frequencies (4, 8, 12, 16 kHz).

Operation with $\mathrm{V}_{\text {DClink }}$ connection (special case):

- Improved filter efficiency in the low frequency range ($\leq 150 \mathrm{kHz}$).
- Only permissible for 12 kHz or 16 kHz PWM frequency.
- Set PWM fix = "ON" (P862/P863 for MOVIDRIVE® and P311/P331 for MOVITRAC ${ }^{\circledR} 31 C$).
- For HF...-403: only permissible where $\mathrm{V}_{\text {mains }} \leq 400 \mathrm{~V}_{\mathrm{Ac}}$.

Due to the $V_{\text {DClink }}$ connection, the output current of the inverter increases as per the following table:

$\mathbf{f}_{\text {PWM }}$	$\mathbf{V}_{\text {mains }}=\mathbf{3} \times \mathbf{4 0 0} \mathbf{V}_{\mathbf{A C}}$	$\mathbf{V}_{\text {mains }}=\mathbf{3} \times \mathbf{5 0 0} \mathbf{V}_{\mathbf{A C}}$
$\mathbf{1 2} \mathbf{~ k H z}$	12%	15%
$\mathbf{1 6} \mathbf{~ k H z}$	8%	12%

If the above is not observed, this may result in an inverter switch-off due to overload.

2.4.12 Connecting the decentralized frequency inverter

Fig. 75: Connection of frequency inverter
The internal wiring is delivered with the unit but is not connected up. The mains output does not have to be connected.

SEW-EURODRIVE right around the globe is your competent partner in matters of power
transmission with manufacturing and assembly plants in most major industrial countries.

[^0]: *) Units for $\vartheta_{\text {amb }}<0^{\circ} \mathrm{C}$ on request

[^1]: ${ }^{1)} \mathrm{cdf}=$ cyclic duration factor of the braking resistor in $\%$ related to a duty cycle time of $\leq 120 \mathrm{~s}$.
 ${ }^{2)}$ The regenerative power rating applies to horizontal mounting. If mounted vertically, these values decrease by 10%.

[^2]: * If the MOVITRAC ${ }^{\circledR} 31 \mathrm{C}$ size 1 is operated together with an EFO30-503 EMC module, a flat-pack heat sink for brake resistors must not be used.

[^3]: For these signals the appropriate parameters must be activated.

 1) Enable/rapid stop can also be programmed to be inactive. The inverter can then be enabled by the directional commands CW or CCW. In this case, the inverter cannot be stopped by RAPID STOP with the rapid stop ramp t13/t23, but by STOP with ramp t11/t21 or t12/t22.
 2) External fault: External fault signals (e.g. from a PTC thermistor tripping unit) can be used to cause the inverter to behave as though a fault was signalled by one of the self-monitoring functions, i.e. it switches off with a fault indication (the inverter output is de-energized; fault signal 27 "EXT. TERMINAL" appears in the display). The input is "low active", i.e. in the no-fault condition, a "1" signal must be present on the terminal (fail-safe). The signal only becomes effective when the inverter is enabled.
[^4]: If a binary output is programmed to this function, then the function must be activated via the corresponding parameter.
 factory-set to TL. 63 (FEA 31C/FIO 31C \rightarrow P612)
 2) factory-set to TL. 64 (FEA 31C/FIO 31C \rightarrow P613)
 3) factory-set to TL. $62(\rightarrow \mathrm{P} 611)$

[^5]: *) If an HF.. output filter is used, then the cable length is not determined by these limits, but solely by the voltage drop on the motor cable.

[^6]: *) In accordance with VDE 0100 Part 430 loading not permitted.

