VLT ${ }^{\oplus}$ AutomationDrive FC 300

## Fi

## Contents

1. How to Read this Instruction Manual ..... 3
Approvals ..... 4
Symbols ..... 4
Abbreviations ..... 5
2. Safety Instructions and General Warning ..... 7
High Voltage ..... 8
Avoid Unintended Start ..... 9
Safe Stop of the FC 300 ..... 9
Safe Stop Installation (FC 302 and FC 301 - A1 enclosure only) ..... 11
IT Line ..... 12
3. How to Install ..... 13
Mechanical Installation ..... 16
Electrical Installation ..... 21
Connection to Line Power and Grounding ..... 22
Motor Connection ..... 24
Fuses ..... 27
Electrical Installation, Control Terminals ..... 34
Connection Examples ..... 36
Start/Stop ..... 36
Pulse Start/Stop ..... 36
Speed Up/Slow ..... 37
Potentiometer Reference ..... 37
Electrical Installation, Control Cables ..... 38
Switches S201, S202, and S801 ..... 39
Additional Connections ..... 43
Mechanical Brake Control ..... 43
Motor Thermal Protection ..... 44
4. How to Program ..... 45
The Graphical and Numerical LCP ..... 45
How to Program on the Graphical LCP ..... 45
How to Program on the Numerical Local Control Panel ..... 46
Quick Setup ..... 48
Parameter Lists ..... 53
5. General Specifications ..... 81
6. Troubleshooting ..... 87
Warnings/Alarm Messages ..... 87
Index ..... 96

## 1. How to Read this Instruction Manual

### 1.1.1. How to Read this Instruction Manual

VLT ${ }^{\circledR}$ AutomationDrive FC 300 is designed to provide high shaft performance on electrical motors. Please read this manual carefully for proper use. Incorrect handling of the adjustable frequency drive may cause improper operation of the adjustable frequency drive or related equipment, shorten lifetime or cause other problems.

This Instruction Manual will help you get started and install, program, and troubleshoot your VLT ${ }^{\circledR}$ AutomationDrive FC 300.
The $\mathrm{VLT}{ }^{\circledR}$ AutomationDrive FC 300 comes in twoshaft performance levels. The VLT ${ }^{\circledR}$ AutomationDrive FC 300 comes in two shaft performance levels. FC 301 ranges from scalar (U/f) to VVC + and handles asynchronous motors only. The FC 302 is a high performance adjustable frequency drive for asynchronous as well as permanent motors and handles various kinds of motor control principles such as scalar (U/f), VVC+ and Flux vector motor control.
This Instruction Manual covers both the FC 301 and the FC 302. Where information covers both series, we refer to the FC 300. Otherwise, we refer specifically to either the FC 301 or the FC 302.

Chapter 1, How to Read this Instruction Manual, introduces the manual and informs you about the approvals, symbols, and abbreviations used in this literature.

Chapter 2, Safety Instructions and General Warnings, contains instructions on how to handle the FC 300 correctly.

Chapter 3, How to Install, guides you through mechanical and technical installation.

Chapter 4, How to Program, shows you how to operate and program the FC 300 via the Local Control Panel.

Chapter 5, General Specifications, contains technical data about the FC 300.

Chapter 6, Troubleshooting, assists you in solving problems that may occur when using the FC 300.

## Available Literature for the FC 300

- The VLT ${ }^{\circledR}$ AutomationDrive FC 300 Instruction Manual provides the information needed to get the drive up and running.
- $\quad$ The VLT ${ }^{\circledR}$ AutomationDrive FC 300 Design Guide contains all the technical information about the drive design and applications including encoder, resolver and relay options.
- $\quad$ The VLT ${ }^{\circledR}$ AutomationDrive FC 300 Profibus Instruction Manual provides the information required for controlling, monitoring and programming the drive via aProfibus serial communication bus.
- $\quad$ The VLT ${ }^{\circledR}$ AutomationDrive FC 300 DeviceNet Instruction Manual provides the information required for controlling, monitoring and programming the drive via a DeviceNet serial communication bus.
- $\quad$ The VLT ${ }^{\circledR}$ AutomationDrive FC 300MCT 10Instruction Manual provides information for installation and use of the software on a PC.
- $\quad$ The VLT ${ }^{\circledR}$ AutomationDrive FC 300 IP 21/ Type 1 Instruction provides information for installing the IP 21/ Type 1 option.
- $\quad$ The VLT ${ }^{\circledR}$ AutomationDrive FC 30024 V DC Backup Instructions provide information for installing the 24 V DC backup option.

Danfoss Drives technical literature is also available online at www.danfoss.com/drives.

### 1.1.2. Approvals

$$
C \in \mathbb{C}
$$

### 1.1.3. Symbols

Symbols used in this Instruction Manual.


Indicates a general warning.


Indicates a high-voltage warning.
$\square$

### 1.1.4. Abbreviations

| Alternating current | AC |
| :---: | :---: |
| American wire gauge | AWG |
| Ampere/AMP | A |
| Automatic Motor Adaptation | AMA |
| Current limit | ILIM |
| Degrees Celsius | ${ }^{\circ} \mathrm{C}$ |
| Direct current | DC |
| Drive Dependent | D-TYPE |
| Electro Magnetic Compatibility | EMC |
| Electronic Thermal Relay | ETR |
| drive | FC |
| Gram | g |
| Hertz | Hz |
| Kilohertz | kHz |
| Local Control Panel | LCP |
| Meter | m |
| Millihenry Inductance | mH |
| Milliampere | mA |
| Millisecond | ms |
| Minute | min |
| Motion Control Tool | MCT |
| Nanofarad | nF |
| Newton Meters | Nm |
| Nominal motor current | $\mathrm{Im}_{\mathrm{M}, \mathrm{N}}$ |
| Nominal motor frequency | $\mathrm{f}_{\mathrm{M}, \mathrm{N}}$ |
| Nominal motor power | $\mathrm{P}_{\mathrm{M}, \mathrm{N}}$ |
| Nominal motor voltage | $U_{M, N}$ |
| Parameter | par. |
| Protective Extra Low Voltage | PELV |
| Printed Circuit Board | PCB |
| Rated Inverter Output Current | Iinv |
| Revolutions Per Minute | RPM |
| Second | S |
| Torque limit | TLIM |
| Volt | V |

2. Safety Instructions and General Warning

## 2. Safety Instructions and General Warning

### 2.1.1. Disposal Instructions



The FC 300 AutomationDrive DC link capacitors remain charged after power has been disconnected. To avoid electrical shock, disconnect the FC 300 from the line supply before carrying out maintenance procedures. When using a PM motor, make sure it is disconnected. Before servicing the adjustable frequency drive, wait the minimum amount of time indicated below:

| FC 300 | $380-500 \mathrm{~V}$ | $\begin{aligned} & 0.33-10 \mathrm{hp} 4 \text { minutes } \\ & {[0.25-7.5 \mathrm{~kW}]} \end{aligned}$ |
| :---: | :---: | :---: |
|  |  | 15-100 hp [11-75 15 minutes kW] |
|  |  | 125-300 hp 20 minutes $[90-200 \mathrm{~kW}]$ |
|  |  | $350-550 \mathrm{kp} 40$ minutes [250-400 kW] |
|  | 525-690 V | $50-350$ hp 20 minutes [37-250 kW] |
|  |  | $\begin{aligned} & 450-750 \text { hp } 30 \text { minutes } \\ & {[315-560 \mathrm{~kW}]} \end{aligned}$ |

## FC 300 <br> Instruction Manual Software version: 4.5x <br>  <br> $\square$ (1).

This Instruction Manual can be used for all FC 300 adjustable frequency drives with software version 4.5 x .
The software version number can be found in parameter 15-43.

### 2.1.2. High Voltage



The voltage of the adjustable frequency drive is dangerous whenever the adjustable frequency drive is connected to line power. Incorrect installation or operation of the motor or adjustable frequency drive may cause damage to the equipment, serious personal injury or death. The instructions in this manual must therefore be observed, in addition to applicable local and national rules and safety regulations.

## Installation at high altitudes

At altitudes higher than $6,500 \mathrm{ft}$ [2 km], please contact Danfoss Drives regarding PELV.


The voltage of the adjustable frequency drive is dangerous whenever connected to
line power. Incorrect installation of the motor, adjustable frequency drive or serial
communication bus may cause damage to the equipment, serious personal injury or
death. Consequently, the instructions in this manual, as well as national and local
rules and safety regulations, must be followed.

## Safety Regulations

1. The adjustable frequency drive must be disconnected from line power if repair work is to be carried out. Make sure that the line supply has been disconnected and that the necessary time has passed before removing motor and line plugs.
2. The [STOP/RESET] key on the control panel of the adjustable frequency drive does not disconnect the equipment from line power and is thus not to be used as a safety switch.
3. Correct protective grounding of the equipment must be established, the user must be protected against supply voltage, and the motor must be protected against overload in accordance with applicable national and local regulations.
4. The ground leakage currents are higher than 3.5 mA .
5. Protection against motor overload is not included in the factory setting. If this function is desired, set par. 1-90 to data value ETR trip or data value ETR warning.
6. Do not remove the plugs for the motor and line supply while the adjustable frequency drive is connected to line power. Make sure that the line supply has been disconnected and that the necessary time has passed before removing motor and line plugs.
7. Please note that the adjustable frequency drive has more voltage inputs than L1, L2 and L3 when load sharing (linking of DC intermediate circuit) and external 24 V DC have been installed. Make sure that all voltage inputs have been disconnected and that the necessary time has passed before commencing repair work.

### 2.1.3. General Warning

```
Warning:
Touching the electrical parts may be fatal - even after the equipment has been disconnected from line power.
Also make sure that other voltage inputs have been disconnected, such as load sharing (linkage of DC intermediate circuit), as well as the motor connection for kinetic backup.
Using VLT \({ }^{\circledR}\) AutomationDrive FC 300: wait at least 15 minutes.
A shorter time is allowed only if indicated on the nameplate for the specific unit.
```


#### Abstract

Leakage Current The ground leakage current from the FC 300 exceeds 3.5 mA . To ensure that the ground cable has a good mechanical connection to the ground connection (terminal $95)$, the cable-cross section must be at least $0.016 \mathrm{in}^{2}{ }^{2}\left[10 \mathrm{~mm}^{2}\right]$ or 2 times rated ground wires terminated separately.

\section*{Residual Current Device}

This product can cause DC current in the protective conductor. If a residual current device (RCD) is used for extra protection, only an RCD of Type $B$ (time delayed) may be used on the supply side of this product. See also RCD Application Note MN.90.GX. 02.

Protective grounding of the FC 300 and the use of RCDs must always meet national and local regulations.


### 2.1.4. Before Commencing Repair Work

1. Disconnect the adjustable frequency drive from the line power.
2. Wait for the discharge of the $D C$ link. See the period of time on the warning label.
3. Disconnect DC bus terminals 88 and 89.
4. Remove motor cable.

### 2.1.5. Avoid Unintended Start

While the FC 300 is connected to line power, the motor can be started/stopped using digital commands, bus commands, references or via the Local Control Panel (LCP).

- Disconnect the FC 300 from line power whenever personal safety considerations make it necessary to avoid an unintended start.
- To avoid an unintended starts, always activate the [OFF] key before changing parameters.
- An electronic fault, temporary overload, a fault in the line supply, or lost motor connection may cause a stopped motor to start. The FC 300 with Safe Stop (i.e., FC 301 in A1 enclosure and FC 302) provides protection against unintended starts if the Safe Stop Terminal 37 is on low voltage level or disconnected.


### 2.1.6. Safe Stop of the FC 300

The FC 302, and also the FC301 in A1 enclosure, can perform the safety function Safe Torque Off (as defined by IEC 61800-5-2) or Stop Category 0 (as defined in EN 60204-1).

FC 301 A1 enclosure: When safe stop is included in the drive, position 18 of Type Code must be either T or U. If position 18 is B or X, Safe Stop Terminal 37 is not included!
Example:
Type Code for FC 301 A1 with Safe Stop: FC-301PK75T4Z20H4TGCXXXSXXXXAOBXCXXXXD0
It is designed and deemed suitable for the requirements of Safety Category 3 in EN 954-1. This function is called safe stop. Prior to integrating and using safe stop in an installation, a thorough risk analysis must be carried out on the installation in order to determine whether the safe stop functionality and safety category are appropriate and sufficient. In order to install and use the Safe Stop function in accordance with the requirements of Safety Category 3 in EN 954-1, the related information and instructions of the FC 300 Design Guide MG.33.BX.YY must be followed! The information and instructions contained in the Instruction Manual are not sufficient for a correct and safe use of the safe stop functionality!


### 2.1.7. Safe Stop Installation (FC 302 and FC 301 - A1 enclosure only)

## To carry out an installation of a Category 0 Stop (EN60204) in accordance with Safety Category 3 (EN954-1), follow these instructions:

1. The bridge (jumper) between Terminal 37 and 24 V DC must be removed. Cutting or breaking the jumper is not sufficient. Remove it entirely to avoid short-circuiting. See jumper on illustration.
2. Connect terminal 37 to 24 V DC by a short circuit-protected cable. The 24 V DC voltage supply must be interruptible by an EN954-1 category 3 circuit interrupt device. If the interrupt device and the adjustable frequency drive are placed in the same installation panel, you can use a regular cable instead of a protected one.
3. Unless the FC302 itself has protection class IP 54 and higher, it must be placed in an IP 54 enclosure. Consequently, FC301 A1 must always be placed in an IP 54 enclosure.

2.1: Bridge jumper between terminal 37 and 24 VDC

The illustration below shows a Stopping Category 0 (EN 60204-1) with safety Category 3 (EN $954-1$ ). The circuit interruption is caused by an opening door contact. The illustration also shows how to connect a non-safety-related hardware coast.

2.2: Illustration of the essential aspects of an installation to achieve a Stopping Category 0 (EN 60204-1) with safety Category 3 (EN 954-1).

### 2.1.8. IT Line

Par. 14-50 RFI 1 can be used on the FC $102 / 202 / 302$ to disconnect the internal RFI capacitors from the RFI filter to ground. If this is done, it will reduce the RFI performance to A2 level.

## 3. How to Install

### 3.1.1. About How to Install

This chapter covers mechanical and electrical installations to and from power terminals and control card terminals.

### 3.1.2. How to Get Started

The FC 300 AutomationDrive is designed for quick installation and is EMC compliant. Just follow the steps described below.


## Mechanical Installation

- Mechanical mounting


## Electrical Installation

- Connection to Line and Protecting Ground
- Motor connection and cables
- Fuses and circuit breakers
- Control terminals - cables


## Quick set-up

- Local Control Panel, LCP
- Automatic Motor Adaptation, AMA
- Programming

Frame size is dependent on enclosure type, power range and line voltage.

3.1: Diagram showing basic installation including line power, motor, start/stop key, and potentiometer for speed adjustment.

| Enclosure type |  | A1 | A2 | A3 | A5 | B1 | B2 | C1 | C2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
| Enclosure protection | IP | 20/21 | 20/21 | 20/21 | 55/66 | 21/55/66 | 21/55/66 | 21/55/66 | 21/55/66 |
|  | NEMA | Chassis/Type 1 | Chassis/ Type 1 | Chassis/ Type 1 | Type 12/Type 4X | Type 1/Type 12 | Type 1/Type 12 |  |  |
| Rated power |  | $\begin{aligned} & 0.34-2 \mathrm{hp} \\ & {[0.25-1.5 \mathrm{~kW}]} \\ & (200-240 \mathrm{~V}) \\ & 0.5-2 \mathrm{hp} \\ & {[0.37-1.5 \mathrm{~kW}]} \\ & (380-480 \mathrm{~V}) \end{aligned}$ | 0.34-4 hp <br> [0.25-3 kW] <br> (200-240 V) <br> 0.5-5 hp [0.37-4 <br> kW] <br> (380-480/ <br> 500 V ) <br> 1-5 hp [0.75-4 <br> kW] (525-600 <br> V) | $\begin{aligned} & 5 \mathrm{hp}[3.7 \mathrm{~kW}] \\ & (200-240 \mathrm{~V}) \\ & 5.5-7.5 \mathrm{~kW} \\ & (380-480 / \\ & 500 \mathrm{~V}) \\ & 7.5-10 \mathrm{hp} \\ & {[5.5-7.5 \mathrm{~kW}]} \\ & (525-600 \mathrm{~V}) \end{aligned}$ | $\begin{aligned} & 0.34-5 \mathrm{hp} \\ & {[0.25-3.7 \mathrm{~kW}]} \\ & (200-240 \mathrm{~V}) \\ & 0.5-10 \mathrm{hp} \\ & {[0.37-7.5 \mathrm{~kW}]} \\ & (380-480 / \\ & 500 \mathrm{~V}) \\ & 1-10 \mathrm{hp}[0.75 \\ & -7.5 \mathrm{~kW}] \\ & (525-600 \mathrm{~V}) \end{aligned}$ | 7.5-10 hp <br> [5.5-7.5 kW] <br> (200-240 V) <br> 15-20 hp [11-15 <br> kW] (380-480/ <br> 500 V ) | $\begin{aligned} & 15 \mathrm{hp}[11 \mathrm{~kW}] \\ & (200-250 \mathrm{~V}) \\ & 25-30 \mathrm{hp} \\ & {[18.5-22 \mathrm{~kW}]} \\ & (380-480 / \\ & 500 \mathrm{~V}) \end{aligned}$ | $\begin{aligned} & 20-30 \mathrm{hp}[15-22 \\ & \mathrm{kW}] \\ & (200-240 \mathrm{~V}) \\ & 40-60 \mathrm{hp}[30-45 \\ & \mathrm{kW}](380-480 / \\ & 500 \mathrm{~V}) \end{aligned}$ | 40-50 hp [30-37 <br> kW] <br> (200-240 V) <br> 75-100 hp <br> [55-75 kW] <br> (380-480/ <br> 500 V ) |

### 3.1.3. Accessory Bag

Find the following parts included in the FC 100/300 Accessory Bag.

$1+2$ only available in units with brake chopper. Only one relay connector is included for FC 101/301 units. For DC link connection (load sharing), connector 1 can be ordered separately (code no. 130B1064).
An eight-pole connector is included in the accessory bag for the FC 101/301 without Safe Stop.

### 3.2. Mechanical Installation

### 3.2.1. Mechanical mounting

FC 300 IP 20 Frame sizes A1, A2 and A3, as well as IP 21/ IP 55 Frame sizes A5, B1, B2, C1 and C 2 allow side-by-side installation.

If the IP 21 Enclosure kit (130B1122 or 130B1123) is used, there must be a min. clearance of 2 in. [ 50 mm ] between the drives.

For optimal cooling conditions, allow a free air passage above and below the adjustable frequency drive. See table below.


1. Drill holes in accordance with the measurements given.
2. You must use screws that are suitable for the surface on which you want to mount the FC 300. Retighten all four screws.


Mounting frame sizes $\mathrm{A} 1, \mathrm{~A} 2$ and A 3 :


Mounting frame sizes A5, B1, B2, C1 and C2:
The back wall must always be solid for optimum cooling.


When mounting frame sizes $\mathrm{A} 5, \mathrm{~B} 1, \mathrm{~B} 2, \mathrm{C} 1$ and C 2 on a non-solid back wall, the drive must be provided with a back plate A due to insufficient cooling air over the heatsink.



See the following tables for enclosure dimensions

| Mechanical dimensions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame size |  | A1 |  | A2 |  | A3 |  | A5$0.33-5 \mathrm{hp}$$[0.25-3.7 \mathrm{~kW}]$$(200-240 \mathrm{~V})$$0.5-10 \mathrm{hp}$$[0.37-7.5 \mathrm{~kW}]$$(380-480 /$$500 \mathrm{~V})$$1-10 \mathrm{hp}$$[0.7-7.5 \mathrm{~kW}]$$(525-600 \mathrm{~V})$ |
|  |  | $\begin{aligned} & 0.33-2 \mathrm{hp} \\ & \mathrm{~kW}](200 \\ & 0.5-2 \mathrm{hp} \\ & \mathrm{~kW}](38 \mathrm{c} \end{aligned}$ | $\begin{aligned} & {[0.25-1.5} \\ & 0-240 \mathrm{~V}) \\ & {[0.37-1.5} \\ & 0-480 \mathrm{~V}) \end{aligned}$ | $\begin{array}{r} 0.33-4 \mathrm{hp} \\ \mathrm{~kW}](200 \\ 0.5-5 \mathrm{hp} \\ \mathrm{~kW}](38 \\ 500 \\ 1-5 \mathrm{hp}[0 . \\ (525-6 \end{array}$ | $\begin{aligned} & \mathrm{p}[0.25-3 \\ & 0-240 \mathrm{~V}) \\ & {[0.37-4.0} \\ & 80-480 / \\ & 0 \mathrm{~V}) \\ & .75-4 \mathrm{~kW}] \\ & 600 \mathrm{~V}) \end{aligned}$ | $\begin{array}{r} 5 \mathrm{hp}[3 \\ (200-2 \\ 7.5-10 \mathrm{hp} \\ \mathrm{kn} \\ (380- \\ 500 \\ 7.5-10 \mathrm{hp} \\ \mathrm{kn} \\ (525-6 \end{array}$ | 3.7 kW] <br> 240 V) <br> [5.5-7.5 <br> N] <br> 480/ <br> V) <br> [5.5-7.5 <br> 600 V ) |  |
| $\begin{aligned} & \hline \text { IP } \\ & \text { NEMA } \\ & \hline \end{aligned}$ |  | 20 Chassis | $\begin{array}{\|l\|} \hline 21 \\ \text { Type } 1 \end{array}$ | 20 Chassis | $\begin{array}{\|l\|} \hline 21 \\ \text { Type } 1 \\ \hline \end{array}$ | 20 Chassis | $\begin{array}{\|l\|} \hline 21 \\ \text { Type } 1 \end{array}$ | $\begin{aligned} & \text { 55/66 } \\ & \text { Type } 12 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |
| Height of backplate | A | $\begin{array}{\|c} \hline 7.9 \text { in [200 } \\ \mathrm{mm}] \end{array}$ |  | $\begin{array}{\|c\|} \hline 10.6 \mathrm{in} \\ {[268 \mathrm{~mm}]} \end{array}$ | $\begin{gathered} 14.8 \mathrm{in} \\ {[375 \mathrm{~mm}]} \end{gathered}$ | $\begin{array}{\|c\|} \hline 10.6 \mathrm{in} \\ {[268 \mathrm{~mm}]} \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 14.8 \mathrm{in} \\ {[375 \mathrm{~mm}]} \\ \hline \end{array}$ | $\begin{gathered} 16.5 \text { in }[420 \\ \mathrm{mm}] \end{gathered}$ |
| Height with de-coupling plate | A | $\begin{gathered} 12.4 \mathrm{in} \\ {[316 \mathrm{~mm}]} \end{gathered}$ | - | $\begin{gathered} 14.7 \mathrm{in} \\ {[374 \mathrm{~mm}]} \end{gathered}$ |  | $\begin{gathered} 14.7 \mathrm{in} \\ \text { [374 mm] } \end{gathered}$ | - | - |
| Distance between mounting holes | a | $\begin{gathered} 7.5 \mathrm{in}[190 \\ \mathrm{mm}] \end{gathered}$ |  | $\begin{gathered} 10.1 \mathrm{in} \\ {[257 \mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} 13.8 \mathrm{in} \\ {[350 \mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} 10.1 \mathrm{in} \\ {[257 \mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} 13.8 \mathrm{in} \\ {[350 \mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} 15.8 \mathrm{in}[402 \\ \mathrm{mm}] \end{gathered}$ |
| Width |  |  |  |  |  |  |  |  |
| Width of backplate | B | $\begin{array}{\|c\|} \hline 2.9 \text { in }[75 \\ \mathrm{mm}] \end{array}$ |  | $\begin{gathered} 3.5 \text { in }[90 \\ \mathrm{mm}] \end{gathered}$ | $\begin{gathered} 3.5 \text { in }[90 \\ \mathrm{mm}] \end{gathered}$ | $\begin{gathered} 5.1 \text { in }[130 \\ \mathrm{mm}] \end{gathered}$ | $\begin{gathered} 5.1 \text { in }[130 \\ \mathrm{mm}] \end{gathered}$ | 9.5 in [242 mm] |
| Width of backplate with one C option | B |  |  | $\begin{gathered} 5.1 \mathrm{in}[130 \\ \mathrm{mm}] \end{gathered}$ | $\begin{gathered} 5.1 \mathrm{in}[130 \\ \mathrm{mm}] \end{gathered}$ | $\begin{gathered} 6.7 \text { in }[170 \\ \mathrm{mm}] \end{gathered}$ | $\left\lvert\, \begin{gathered} 6.7 \mathrm{in}[170 \\ \mathrm{mm}] \end{gathered}\right.$ | 9.5 in [242 mm] |
| Width of  <br> backplate  <br> with two C <br> options   <br>   | B |  |  | $\begin{gathered} 5.9 \text { in }[150 \\ \mathrm{mm}] \end{gathered}$ | $\begin{gathered} 5.9 \text { in }[150 \\ \mathrm{mm}] \end{gathered}$ | $\begin{gathered} 7.5 \text { in }[190 \\ \mathrm{mm}] \end{gathered}$ | $\begin{gathered} 7.5 \mathrm{in}[190 \\ \mathrm{mm}] \end{gathered}$ | 9.5 in [242 mm] |
| Distance between mounting holes | b | $\begin{array}{\|c} 2.4 \mathrm{in}[60 \\ \mathrm{mm}] \end{array}$ |  | $\begin{gathered} 2.8 \text { in }[70 \\ \mathrm{mm}] \end{gathered}$ | $\begin{gathered} 2.8 \text { in }[70 \\ \mathrm{mm}] \end{gathered}$ | $\begin{gathered} 4.3 \text { in }[110 \\ \mathrm{mm}] \end{gathered}$ | $\left\lvert\, \begin{gathered} 4.3 \text { in }[110 \\ \mathrm{mm}] \end{gathered}\right.$ | 8.5 in [215 mm] |
| Depth |  |  |  |  |  |  |  |  |
| Depth without option A/ B | C | $\begin{gathered} 8.1 \text { in [205 } \\ \mathrm{mm}] \end{gathered}$ |  | $\begin{gathered} 8.1 \text { in }[205 \\ \mathrm{mm}] \end{gathered}$ | $\begin{gathered} 8.1 \text { in }[205 \\ \mathrm{mm}] \end{gathered}$ | $\begin{gathered} 8.1 \text { in }[205 \\ \mathrm{mm}] \end{gathered}$ | $\begin{gathered} 8.1 \text { in }[205 \\ \mathrm{mm}] \end{gathered}$ | 7.7 in [195 mm] |
| $\begin{aligned} & \text { With option } \\ & \text { A/B } \end{aligned}$ | C | $\begin{gathered} 8.7 \text { in }[220 \\ \mathrm{mm}] \end{gathered}$ |  | $\begin{gathered} 8.7 \text { in }[220 \\ \mathrm{mm}] \end{gathered}$ | $\begin{gathered} 8.7 \text { in }[220 \\ \mathrm{mm}] \end{gathered}$ | $\begin{gathered} 8.7 \text { in [220 } \\ \mathrm{mm}] \end{gathered}$ | $\begin{gathered} 8.7 \text { in }[220 \\ \mathrm{mm}] \end{gathered}$ | 7.7 in [195 mm] |
| Without option $A / B$ <br> With option A/B | D* | $\begin{gathered} 8.2 \text { in [207 } \\ \mathrm{mm}] \end{gathered}$ |  |  | $\begin{gathered} 8.2 \text { in }[207 \\ \mathrm{mm}] \end{gathered}$ |  | $\begin{gathered} 8.2 \text { in [207 } \\ \mathrm{mm}] \end{gathered}$ | - |
|  | D* | $\begin{array}{\|c} 8.74 \mathrm{in} \\ {[222 \mathrm{~mm}]} \end{array}$ |  |  | $\begin{gathered} 8.74 \mathrm{in} \\ {[222 \mathrm{~mm}]} \end{gathered}$ |  | $\begin{array}{\|c} 8.74 \mathrm{in} \\ {[222 \mathrm{~mm}]} \end{array}$ |  |
| Screw holes |  |  |  |  |  |  |  |  |
|  | c | $\begin{gathered} 0.24 \mathrm{in} \\ {[6.0 \mathrm{~mm}]} \end{gathered}$ |  | $\begin{gathered} 0.32 \mathrm{in} \\ {[8.0 \mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} 0.33 \text { in }[8.25 \\ \mathrm{mm}] \end{gathered}$ |
|  | d | $\begin{aligned} & \varnothing 0.35 \mathrm{in} . \\ & {[8 \mathrm{~mm}]} \end{aligned}$ |  | $\varnothing 0.43$ in <br> [11 mm] | $\begin{gathered} \varnothing 0.47 \text { in }[12 \\ \mathrm{mm}] \end{gathered}$ |
|  | e | $\begin{gathered} \varnothing 0.20 \text { in [5 } \\ \mathrm{mm}] \end{gathered}$ |  | $\begin{gathered} \varnothing 0.22 \mathrm{in} \\ {[5.5 \mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \varnothing 0.22 \mathrm{in} \\ {[5.5 \mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \varnothing 0.22 \mathrm{in} \\ {[5.5 \mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \varnothing 0.22 \mathrm{in} \\ {[5.5 \mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \varnothing 0.26 \text { in }(6.5 \\ \mathrm{mm}) \end{gathered}$ |
|  | f | $\begin{gathered} 0.2 \text { in }[5 \\ \mathrm{mm}] \end{gathered}$ |  | $\begin{gathered} 0.35 \text { in }[9 \\ \mathrm{mm}] \end{gathered}$ | $\begin{gathered} 0.35 \text { in [9 } \\ \mathrm{mm}] \end{gathered}$ | $\begin{gathered} 0.35 \text { in [9 } \\ \mathrm{mm}] \end{gathered}$ | $\begin{gathered} 0.35 \text { in }[9 \\ \mathrm{mm}] \end{gathered}$ | 0.35 in [ 9 mm ] |
| Max weight |  | $\begin{aligned} & 59.5 \mathrm{lbs} \\ & {[2.7 \mathrm{~kg}]} \end{aligned}$ |  | $\begin{aligned} & 10.8 \mathrm{lbs} \\ & {[4.9 \mathrm{~kg}]} \end{aligned}$ | $\begin{aligned} & 11.7 \mathrm{lbs} \\ & \text { [5.3 kg] } \end{aligned}$ | $\begin{aligned} & 14.6 \mathrm{lbs} \\ & {[6.6 \mathrm{~kg}]} \end{aligned}$ | $\begin{gathered} 15.4 \mathrm{in} \\ {[7.0 \mathrm{~kg}]} \end{gathered}$ | $\begin{aligned} & 29.8 / 31.3 \mathrm{lbs} \\ & {[13.5 / 14.2 \mathrm{~kg}]} \end{aligned}$ |
| * The front of the adjustable frequency drive is slightly convex. C is the shortest distance from back to front (measured from corner to corner) of the adjustable frequency drive. D is the longest distance from back to front (measured in the middle) of the adjustable frequency drive. |  |  |  |  |  |  |  |  |


| Mechanical dimensions |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Frame size |  | B1 | B2 | C1 | C2 |
|  |  | $\begin{gathered} 7.5-10 \mathrm{hp}[5.5-7.5 \\ \mathrm{kW}] \\ (200-240 \mathrm{~V}) \\ 15-20 \mathrm{hp}[11-15 \\ \mathrm{kW}] \\ (380-480 / 500 \mathrm{~V}) \end{gathered}$ | $\begin{gathered} 11 \mathrm{~kW} \\ (200-240 \mathrm{~V}) \\ 25-30 \mathrm{hp} \\ {[18.5-22 \mathrm{~kW}]} \\ (380-480 / \\ 500 \mathrm{~V}) \end{gathered}$ | $\begin{gathered} \text { 20-30 hp [15-22 } \\ \mathrm{kW}] \\ (200-240 \mathrm{~V}) \\ 40-60 \mathrm{hp}[30-45 \\ \mathrm{kW}] \\ (380-480 / \\ 500 \mathrm{~V}) \end{gathered}$ | $\begin{gathered} \text { 40-50 hp [30-37 } \\ \mathrm{kW}] \\ (200-240 \mathrm{~V}) \\ 75-100 \mathrm{hp} \\ {[55-75 \mathrm{~kW}]} \\ (380-480 / \\ 500 \mathrm{~V}) \end{gathered}$ |
| $\begin{aligned} & \hline \text { IP } \\ & \text { NEMA } \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \text { 21/ 55/66 } \\ & \text { Type 1/Type } 12 \end{aligned}$ | $\begin{aligned} & \text { 21/55/66 } \\ & \text { Type 1/Type } 12 \end{aligned}$ | $\begin{aligned} & \text { 21/55/66 } \\ & \text { Type 1/Type } 12 \end{aligned}$ | $\begin{aligned} & \text { 21/55/66 } \\ & \text { Type 1/Type } 12 \end{aligned}$ |
| Height |  |  |  |  |  |
| Height of backplate | A | 18.9 in [ 480 mm ] | 25.6 in [650 mm] | 26.8 in [ 680 mm ] | 30.3 in [770 mm] |
| Height with decoupling plate | A | - | - |  |  |
| Distance between mounting holes | a | 17.9 in [454 mm] | 24.6 in [624 mm ] | 25.5 in [648 mm] | 29.1 in [739 mm] |
| Width |  |  |  |  |  |
| Width of backplate | B | 9.5 in [242 mm] | 9.5 in [242 mm] | 12.1 in [308 mm] | 14.6 in [370 mm] |
| Width of backplate with one C option | B | 9.5 in [242 mm] | 9.5 in [242 mm] | 12.1 in [308 mm] | 14.6 in [370 mm] |
| Width of backplate with two C options | B | 9.5 in [242 mm] | 9.5 in [242 mm] | 12.1 in [308 mm] | 14.6 in [370 mm] |
| Distance between mounting holes | b | 8.3 in [210 mm] | 8.3 in [210 mm] | 272 in [272 mm] | 13.2 in [334 mm] |
| Depth |  |  |  |  |  |
| Depth without option A/B | C | 10.2 in [ 260 mm ] | 10.2 in [260 mm] | 12.2 in [ 310 mm ] | 13.2 in [ 335 mm ] |
| With option A/B | C | 10.2 in [ 260 mm ] | 10.2 in [ 260 mm ] | 12.2 in [ 310 mm ] | 13.2 in [ 335 mm ] |
| Without option A/B | D* | - | - | - | - |
| With option $\mathrm{A} / \mathrm{B}$ | D* | - |  |  |  |
| Screw holes |  |  |  |  |  |
|  | c | 0.47 in [12 mm] |
|  | d | $\varnothing 0.75$ in [19 mm] |
|  | e | $\emptyset 0.35$ in [ 9 mm ] | $\varnothing 0.35$ in [9 mm] | $\varnothing 0.39 \mathrm{in} .[9.8 \mathrm{~mm}]$ | $\varnothing 0.39 \mathrm{in} .[9.8 \mathrm{~mm}]$ |
|  | f | 0.35 in [ 9 mm ] | 0.35 in [ 9 mm ] | 0.69 in [ 17.6 mm ] | 0.71 in [ 18 mm ] |
| Max weight |  | 50.7 lbs [23 kg] | $59.5 \mathrm{lbs}[27 \mathrm{~kg}$ ] | 94.8 lbs [ 43 kg ] | $134.5 \mathrm{lbs}[61 \mathrm{~kg}$ ] |
| * The front of the adjustable frequency drive is slightly convex. C is the shortest distance from back to front (measured from corner to corner) of the adjustable frequency drive. D is the longest distance from back to front (measured in the middle) of the adjustable frequency drive. |  |  |  |  |  |

### 3.3. Electrical Installation

## NOTE

## Cables General

All cabling must comply with national and local regulations on cable cross-sections and ambient temperature. Copper ( $140^{\circ}-167^{\circ} \mathrm{F}\left[60^{\circ} / 75^{\circ} \mathrm{C}\right]$ ) conductors are recommended.

## Aluminum Conductors

Terminals can accept aluminum conductors, but the conductor surface must be clean, and the oxidation must be removed and sealed by neutral acid-free Vaseline grease before the conductor is connected.
Furthermore, the terminal screw must be retightened after two days due to the softness of the aluminum. It is crucial to keep the connection a gas-tight joint, otherwise the aluminum surface will oxidize again.

| Tightening-up Torque |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AFD size | 200-240 V | 380-500 V | 525-690 V | Cable for: | Tightening torque |
| A1 | $\begin{array}{ll} 0.33-2 & \mathrm{hp} \\ {[0.25-1.5 \mathrm{~kW}]} \end{array}$ | $\begin{array}{ll} 0.5-2 & \mathrm{hp} \\ {[0.37-1.5} & \mathrm{kW}] \\ \hline \end{array}$ | - | Line, brake resistor, load sharing, motor cables | 0.5-0.6 Nm |
| A2 | $\begin{array}{lr} 0.33-3 & \mathrm{hp} \\ {[0.25-2.2 \mathrm{~kW}]} \end{array}$ | $\begin{aligned} & 0.5-5 \quad \mathrm{hp} \\ & {[0.37-4 \mathrm{~kW}]} \\ & \hline \end{aligned}$ | $\begin{aligned} & 1-5 \mathrm{hp}[0.75-4 \\ & \mathrm{kW}] \end{aligned}$ |  |  |
| A3 | $\begin{aligned} & \text { 4-5 hp [3-3.7 } \\ & \text { kW] } \end{aligned}$ | $\begin{aligned} & 7.5-10 \quad \mathrm{hp} \\ & {[5.5-7.5 \mathrm{~kW}]} \end{aligned}$ | $\begin{aligned} & 7.5-10 \quad \mathrm{hp} \\ & {[5.5-7.5 \mathrm{~kW}]} \end{aligned}$ |  |  |
| A5 | $\begin{aligned} & \text { 4-5 hp [3-3.7 } \\ & \text { kW] } \end{aligned}$ | $\begin{aligned} & 7.5-10 \mathrm{hp} \\ & {[5.5-7.5 \mathrm{~kW}]} \end{aligned}$ | $\begin{array}{ll} 1-10 & \mathrm{hp} \\ {[0.75-7.5 \mathrm{~kW}]} \end{array}$ |  |  |
| B1 | $7.5-10$ hp <br> $[5.5-7.5 \mathrm{~kW}]$  | $15-20 \mathrm{hp}$$[11-15 \mathrm{~kW}]$ | [0.75-7.5 kW] | Line, brake resistor, load sharing, motor cables | 1.8 Nm |
|  |  |  |  | Relay | $0.5-0.6 \mathrm{Nm}$ |
|  |  |  |  | Ground | $2-3 \mathrm{Nm}$ |
| B2 | 11 kW | $\begin{aligned} & 25-30 \\ & {[18.5-22 \mathrm{~kW}]} \end{aligned}$ | - | Line, brake resistor, load sharing cables | 4.5 Nm |
|  |  |  |  | Motor cables | 4.5 Nm |
|  |  |  |  | Relay | $0.5-0.6 \mathrm{Nm}$ |
|  |  |  |  | Ground | 2-3 Nm |
| C1 | $20-30 \mathrm{hp}$$[15-22 \mathrm{~kW}]$ | $\begin{aligned} & 40-60 \mathrm{hp} \\ & {[30-45 \mathrm{~kW}]} \end{aligned}$ | - | Line, brake resistor, load sharing cables | 10 Nm |
|  |  |  |  | Motor cables | 10 Nm |
|  |  |  |  | Relay | $0.5-0.6 \mathrm{Nm}$ |
|  |  |  |  | Ground | 2-3 Nm |
| C2 | $\begin{aligned} & 40-50 \mathrm{hp} \\ & {[30-37 \mathrm{~kW}]} \end{aligned}$ | $\begin{aligned} & 75-100 \mathrm{hp} \\ & {[55-75 \mathrm{~kW}]} \end{aligned}$ | ${ }^{-}$ | Line, brake resistor, load sharing cables | 14 Nm |
|  |  |  |  | Motor cables | 10 Nm |
|  |  |  |  | Relay | $0.5-0.6 \mathrm{Nm}$ |
|  |  |  |  | Ground | 2-3 Nm |
| D1, D3 | - | $\begin{aligned} & 125-150 \mathrm{hp} \\ & {[90-110 \mathrm{~kW}]} \end{aligned}$ | $\begin{gathered} 150-200 \mathrm{hp} \\ {[110-132 \mathrm{~kW}]} \end{gathered}$ | Line, motor cables | 19 Nm |
|  |  |  |  | Load sharing, brake cables | 9.5 Nm |
|  |  |  |  | Relay | $0.5-0.6 \mathrm{Nm}$ |
|  |  |  |  | Ground | 19 Nm |
| D2, D4 | - | $\begin{array}{ll} 200-300 & \mathrm{hp} \\ {[132-200} & \mathrm{kW}] \end{array}$ | $\begin{gathered} 250-450 \mathrm{hp} \\ {[160-315 \mathrm{~kW}]} \end{gathered}$ | Line, motor cables | 19 Nm |
|  |  |  |  | Load sharing, brake cables | 9.5 Nm |
|  |  |  |  | Relay | $0.5-0.6 \mathrm{Nm}$ |
|  |  |  |  | Ground | 19 Nm |
| E1, E2 | - | $\begin{aligned} & 350-550 \mathrm{hp} \\ & {[250-400 \mathrm{~kW}]} \end{aligned}$ | $\begin{gathered} 500-750 \mathrm{hp} \\ {[355-560 \mathrm{~kW}]} \end{gathered}$ | Line, motor cables | 19 Nm |
|  |  |  |  | Load sharing, brake cables | 9.5 Nm |
|  |  |  |  | Relay | $0.5-0.6 \mathrm{Nm}$ |
|  |  |  |  | Ground | 19 Nm |

### 3.3.1. Removal of Knockouts for Extra Cables

1. Remove the cable entry from the adjustable frequency drive (prevent foreign parts from falling into the adjustable frequency drive when removing knockouts)
2. The cable entry must be supported around the knockout you intend to remove.
3. The knockout can now be removed with a strong mandrel and a hammer.
4. Remove burrs from the hole.
5. Mount cable entry on adjustable frequency drive.

### 3.3.2. Connection to Line Power and Grounding

## NOTE

The plug connector for power is pluggable on the FC 300 up to 10 hp [7.5 kW].

1. Insert the two screws into the de-coupling plate, and then slide it into place and tighten the screws.
2. Make sure the FC 300 is properly grounded. Connect to the ground connection (terminal 95). Use the screw from the accessory bag.
3. Place plug connector 91(L1), 92(L2), 93(L3) from the accessory bag onto the terminals labeled MAINS at the bottom of the FC 300.
4. Attach the line wires to the line power plug connector.
5. Support the cable with the enclosed supporting brackets.

## note

Make sure that the line voltage corresponds to the given line voltage on the FC 300 nameplate.


## IT Line

Do not connect 400 V adjustable frequency drives with RFI filters to line supplies with a voltage between phase and ground of more than 440 V .


The ground connection cable cross-section must be at least 0.016 in. $^{2}$ [ $10 \mathrm{~mm}^{2}$ ] or $2 x$ rated line wires terminated separately according to EN 50178.

The line connection is fitted to the line switch if this is included.


Line power connection for frame sizes $\mathrm{A} 1, \mathrm{~A} 2$ and A 3 :


Line connector A5 (IP 55/66) Enclosure


When the disconnector is used (A5 enclosure), the PE must be mounted on the left side of the drive.
Line connection B1 and B2 (IP 21/NEMA Type 1 and IP 55/66/ NEMA Type 12) enclosures


Line connection C1 and C2 (IP 21/ NEMA Type 1 and IP 55/66/ NEMA Type 12) enclosures


The power cables for line power are usually non-shielded cables.

### 3.3.3. Motor Connection

## NOTE

Motor cable must be shielded/armored. The use of an unshielded/unarmored cable is against EMC requirements. Use a shielded/armored motor cable to comply with EMC emission specifications. For more information, see EMC Test Results.

See section General Specifications for correct dimensioning of motor cable cross-section and length.

Shielding of cables: Avoid installation with twisted shield ends (pigtails). They spoil the shielding effect at higher frequencies. If it is necessary to break the shield to install a motor isolator or motor contactor, the shield must be continued at the lowest possible HF impedance.
Connect the motor cable shield to both the FC 300 decoupling plate and the motor's metal housing. Make the shield connections with the largest possible surface area (cable clamp). This is done by using the supplied installation devices in the FC 300.
If it is necessary to split the shield to install a motor isolator or motor relay, the shield must be continued with the lowest possible HF impedance.

Cable length and cross-section: The adjustable frequency drive has been tested with a given length of cable and a given cross-section of that cable. If the cross-section is increased, the cable capacitance - and thus the leakage current - may increase, thereby requiring that the cable length is reduced accordingly. Keep the motor cable as short as possible to reduce the noise level and leakage currents.

Switching frequency: When adjustable frequency drives are used together with sine-wave filters to reduce the acoustic noise from a motor, the switching frequency must be set according to the sine-wave filter instructions in par. 14-01.

1. Fasten decoupling plate to the bottom of the FC 300 with screws and washers from the accessory bag.
2. Attach the motor cable to terminals $96(\mathrm{U}), 97(\mathrm{~V}), 98(\mathrm{~W})$.
3. Connect to ground connection (terminal 99) on decoupling plate with screws from the accessory bag.
4. Insert plug connectors 96 (U), 97 (V), 98 (W) (up to 10 hp [ 7.5 kW ]) and motor cable to terminals labeled MOTOR.
5. Fasten shielded cable to the decoupling plate with screws and washers from the accessory bag.

3.2: Motor connection for $A 1, A 2$ and $A 3$

3.3: Motor connection for A5 (IP 55/66/NEMA Type 12) enclosure

3.4: Motor connection for B1 and B2 (IP 21/ NEMA Type 1, IP 55/ NEMA Type 12 and IP66/ NEMA Type 4X) enclosure

All types of three-phase asynchronous standard motors can be connected to the FC 300. Normally, small motors are star-connected (230/400 V, Y). Large motors are normally delta-connected (400/690 V, $\Delta$ ). Refer to the motor nameplate for the correct connection mode and voltage.

3.5: Motor connection C1 and C2 (IP 21/ NEMA Type 1 and IP 55/66/ NEMA Type 12) enclosure

3.7: Cable entry holes for enclosure B2. The suggested use of the holes are purely recommendations and other solutions are possible.

3.8: Cable entry holes for enclosure C1. The suggested use of the holes are purely recommendations and other solutions are possible.

3.9: Cable entry holes for enclosure C2. The suggested use of the holes are purely recommendations and other solutions are possible.

| Term. no. | 96 | 97 | 98 | 99 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | U | V | W | PE ${ }^{1)}$ | Motor voltage 0-100\% of line voltage. 3 wires out of motor |
|  | U1 | V1 | W1 |  | Delta-connected |
|  | W2 | U2 | V2 | PE1) | 6 wires out of motor |
|  | U1 | V1 | W1 | $\mathrm{PE}^{1)}$ | Star-connected U2, V2, W2 <br> U2, V2 and W2 to be interconnected separately. |

${ }^{1)}$ Protected Ground Connection



NOTE
When using motors without phase insulation paper or other insulation reinforcement suitable for operation with voltage supplied from adjustable frequency drives, fit asine-wave filter on the output of the FC 300.

### 3.3.4. Fuses

## Branch circuit protection:

In order to protect the installation against electrical and fire hazards, all branch circuits in an installation, switch gear, machines, etc. must be short-circuited and overcurrent protected according to national/international regulations.

## Short-circuit protection:

The adjustable frequency drive must be protected against short circuit in order to avoid electrical or fire hazard. Danfoss recommends using the fuses mentioned below to protect service personnel and equipment in case of an internal failure in the drive. The adjustable frequency drive provides full short-circuit protection in case of a short-circuit on the motor output.

## Overcurrent protection:

Provide overload protection to avoid fire hazard due to overheating of the cables in the installation. The adjustable frequency drive is equipped with an internal overcurrent protection that can be used for upstream overload protection (UL applications excluded). See par. 4-18. Moreover, fuses
or circuit breakers can be used to provide the overcurrent protection in the installation. Overcurrent protection must always be carried out according to national regulations.

Fuses must be designed for protection in a circuit capable of supplying a maximum of 100,000 Arms (symmetrical), 500 V maximum.

Non-UL compliance
If UL/cUL is not to be complied with, we recommend using the following fuses, which will ensure compliance with EN50178:
In case of malfunction, not following the recommendation may result in unnecessary damage to the adjustable frequency drive.

| FC 300 | Max. fuse size ${ }^{1)}$ | Voltage | Type |
| :--- | :---: | :---: | :---: |
| K25-K75 | 10 A | $200-240 \mathrm{~V}$ | type gG |
| 1 K1-2K2 | 20 A | $200-240 \mathrm{~V}$ | type gG |
| $3 K 0-3 K 7$ | 32 A | $200-240 \mathrm{~V}$ | type gG |
| $5 \mathrm{~K} 5-7 \mathrm{~K} 5$ | 63 A | $380-500 \mathrm{~V}$ | type gG |
| 11 K | 80 A | $380-500 \mathrm{~V}$ | type gG |
| $15 \mathrm{~K}-18 \mathrm{~K} 5$ | 125 A | $380-500 \mathrm{~V}$ | type gG |
| 22 K | 160 A | $380-500 \mathrm{~V}$ | type aR |
| 30 K | 200 A | $380-500 \mathrm{~V}$ | type aR |
| 37 K | 250 A | $380-500 \mathrm{~V}$ | type aR |

1) Max. fuses - refer to national/international regulations to select an appropriate fuse size.

| FC 300 | Max. fuse size ${ }^{1)}$ | Voltage | Type |
| :--- | :---: | :---: | :---: |
| K37-1K5 | 10 A | $380-500 \mathrm{~V}$ | type gG |
| $2 \mathrm{~K} 2-4 \mathrm{KO}$ | 20 A | $380-500 \mathrm{~V}$ | type gG |
| $5 \mathrm{~K} 5-7 \mathrm{~K} 5$ | 32 A | $380-500 \mathrm{~V}$ | type gG |
| $11 \mathrm{~K}-18 \mathrm{~K}$ | 63 A | $380-500 \mathrm{~V}$ | type gG |
| 22 K | 80 A | $380-500 \mathrm{~V}$ | type gG |
| 30 K | 100 A | $380-500 \mathrm{~V}$ | type gG |
| 37 K | 125 A | $380-500 \mathrm{~V}$ | type gG |
| 45 K | 160 A | $380-500 \mathrm{~V}$ | type aR |
| $55 \mathrm{~K}-75 \mathrm{~K}$ | 250 A | $380-500 \mathrm{~V}$ | type aR |

UL Compliance

Alternate Fuses 200-240 V drives 1/3 hp to $30 \mathrm{hp}(0.25 \mathrm{~kW}-22 \mathrm{~kW}$ )

| FC 300 | Bussmann | Bussmann | Bussmann | Bussmann | Bussmann | Bussmann |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| kW | Type RK1 | Type J | Type T | Type CC | Type CC | Type CC |
| K25-K37 | KTN-R05 | JKS-05 | JJN-06 | FNQ-R-5 | KTK-R-5 | LP-CC-5 |
| K55-1K1 | KTN-R10 | JKS-10 | JJN-10 | FNQ-R-10 | KTK-R-10 | LP-CC-10 |
| 1K5 | KTN-R15 | JKS-15 | JJN-15 | FNQ-R-15 | KTK-R-15 | LP-CC-15 |
| 2K2 | KTN-R20 | JKS-20 | JJN-20 | FNQ-R-20 | KTK-R-20 | LP-CC-20 |
| 3K0 | KTN-R25 | JKS-25 | JJN-25 | FNQ-R-25 | KTK-R-25 | LP-CC-25 |
| 3K7 | KTN-R30 | JKS-30 | JJN-30 | FNQ-R-30 | KTK-R-30 | LP-CC-30 |
| 5K5 | KTN-R50 | KS-50 | JJN-50 | - | - | - |
| 7K5 | KTN-R60 | JKS-60 | JJN-60 | - | - | - |
| 11K | KTN-R80 | JKS-80 | JJN-80 | - | - | - |
| 15K-18K5 | KTN-R125 | JKS-150 | JJN-125 | - | - | - |


| FC 300 | SIBA | Littel fuse | Ferraz- <br> Shawmut | Ferraz- <br> Shawmut |
| :--- | :---: | :---: | :---: | :---: |
| kW | Type RK1 | Type RK1 | Type CC | Type RK1 |
| K25-K37 | $5017906-005$ | KLN-R05 | ATM-R05 | A2K-05R |
| K55-1K1 | $5017906-010$ | KLN-R10 | ATM-R10 | A2K-10R |
| 1K5 | $5017906-016$ | KLN-R15 | ATM-R15 | A2K-15R |
| 2K2 | $5017906-020$ | KLN-R20 | ATM-R20 | A2K-20R |
| 3K0 | $5017906-025$ | KLN-R25 | ATM-R25 | A2K-25R |
| 3K7 | $5012406-032$ | KLN-R30 | ATM-R30 | A2K-30R |
| 5K5 | $5014006-050$ | KLN-R50 | - | A2K-50R |
| 7K5 | $5014006-063$ | KLN-R60 | - | A2K-60R |
| 11K | $5014006-080$ | KLN-R80 | - | A2K-80R |
| 15K-18K5 | $2028220-125$ | KLN-R125 | - | A2K-125R |

Alternate Fuses 200-240 V drives $\mathbf{3 0} \mathbf{h p}$ to $\mathbf{6 0 ~ h p ~ ( 2 2 ~ k W ~ - ~} 45 \mathrm{~kW}$ )

| FC 300 | Bussmann | SIBA | Littel fuse | Ferraz- <br> Shawmut |
| :--- | :---: | :---: | :---: | :---: |
| kW | Type JFHR2 | Type RK1 | JFHR2 | JFHR2 |
| 22K | FWX-150 | $2028220-150$ | L25S-150 | A25X-150 |
| 30K | FWX-200 | $2028220-200$ | L25S-200 | A25X-200 |
| 37K | FWX-250 | $2028220-250$ | L25S-250 | A25X-250 |

KTS fuses from Bussmann may substitute for KTN in 240 V adjustable frequency drives. FWH fuses from Bussmann may substitute for FWX in 240 V adjustable frequency drives. JJS fuses from Bussmann may substitute for JJN in 240 V adjustable frequency drives. KLSR fuses from LITTEL FUSE may substitute for KLNR in 240 V adjustable frequency drives.
L50S fuses from LITTEL FUSE may substitute for L25S fuses in 240 V adjustable frequency drives.

A6KR fuses from FERRAZ SHAWMUT may substitute for A2KR in 240 V adjustable frequency drives.

A50X fuses from FERRAZ SHAWMUT may substitute for A25X in 240 V adjustable frequency drives.

Alternate Fuses 380-500 V drives $1 / 2 \mathrm{hp}$
to 75 hp ( $0.37 \mathrm{~kW}-55 \mathrm{~kW}$ )

| FC 300 | Bussmann | Bussmann | Bussmann | Bussmann | Bussmann | Bussmann |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| kW | Type RK1 | Type J | Type T | Type CC | Type CC | Type CC |
| K37-1K1 | KTS-R6 | JKS-6 | JJS-6 | FNQ-R-6 | KTK-R-6 | LP-CC-6 |
| 1K5-2K2 | KTS-R10 | JKS-10 | JJS-10 | FNQ-R-10 | KTK-R-10 | LP-CC-10 |
| 3K0 | KTS-R15 | JKS-15 | JJS-15 | FNQ-R-15 | KTK-R-15 | LP-CC-15 |
| 4K0 | KTS-R20 | JKS-20 | JJS-20 | FNQ-R-20 | KTK-R-20 | LP-CC-20 |
| 5K5 | KTS-R25 | JKS-25 | JJS-25 | FNQ-R-25 | KTK-R-25 | LP-CC-25 |
| 7K5 | KTS-R30 | JKS-30 | JJS-30 | FNQ-R-30 | KTK-R-30 | LP-CC-30 |
| 11K | KTS-R40 | JKS-40 | JJS-40 | - | - | - |
| 15K | KTS-R50 | JKS-50 | JJS-50 | - | - | - |
| 18K | KTS-R60 | JKS-60 | JJS-60 | - | - | - |
| 22K | KTS-R80 | JKS-80 | JJS-80 | - | - | - |
| 30K | KTS-R100 | JKS-100 | JJS-100 | - | - | - |
| 37K | KTS-R125 | JKS-150 | JJS-150 | - | - | - |
| 45K | KTS-R150 | JKS-150 | JJS-150 | - | - | - |


| FC 300 | SIBA | Littel fuse | Ferraz- <br> Shawmut | Ferraz- <br> Shawmut |
| :--- | :---: | :---: | :---: | :---: |
| kW | Type RK1 | Type RK1 | Type CC | Type RK1 |
| K37-1K1 | $5017906-006$ | KLS-R6 | ATM-R6 | A6K-6R |
| 1K5-2K2 | $5017906-010$ | KLS-R10 | ATM-R10 | A6K-10R |
| 3K0 | $5017906-016$ | KLS-R15 | ATM-R15 | A6K-15R |
| $4 K 0$ | $5017906-020$ | KLS-R20 | ATM-R20 | A6K-20R |
| $5 K 5$ | $5017906-025$ | KLS-R25 | ATM-R25 | A6K-25R |
| 7K5 | $5012406-032$ | KLS-R30 | ATM-R30 | A6K-30R |
| 11K | $5014006-040$ | KLS-R40 | - | A6K-40R |
| $15 K$ | $5014006-050$ | KLS-R50 | - | A6K-50R |
| 18K | $5014006-063$ | KLS-R60 | - | A6K-60R |
| 22K | $2028220-100$ | KLS-R80 | - | A6K-80R |
| 30K | $2028220-125$ | KLS-R100 | - | A6K-100R |
| $37 K$ | $2028220-125$ | KLS-R125 | - | A6K-125R |
| 45K | $2028220-160$ | KLS-R150 | - | A6K-150R |

Alternate Fuses 380-500 V drives 75 hp
to $600 \mathrm{hp}(55 \mathrm{~kW}-450 \mathrm{~kW})$

| FC 300 | Bussmann | Bussmann | Bussmann | Bussmann |
| :--- | :---: | :---: | :---: | :---: |
| kW | JFHR2 | Type H | Type T | JFHR2 |
| 55K | FWH-200 | - | - | - |
| 75K | FWH-250 | - | - | - |
| 90K | FWH-300 | NOS-300 | JJS-300 | 170M3017 |
| P110 | FWH-350 | NOS-350 | JJS-350 | 170 M3018 |
| P132 | FWH-400 | NOS-400 | JJS-400 | 170M4012 |
| P160 | FWH-500 | NOS-500 | JJS-500 | 170M4014 |
| P200 | FWH-600 | NOS-600 | JJS-600 | 170M4016 |
| P250 | - | - | - | $170 M 4017$ |
|  |  | - | - | 170 M5013 |
| P315 | - | - | - | 170 M6013 |
| P355 | - | - | - | $170 M 6013$ |
| P400 | - |  | $170 M 6013$ |  |


| FC 300 | SIBA | Littel fuse | FerrazShawmut | Ferraz- <br> Shawmut |
| :---: | :---: | :---: | :---: | :---: |
| kW | Type RK1 | JFHR2 | JFHR2 | JFHR2 |
| 55K | 2028220-200 | L50S-225 | - | A50-P225 |
| 75K | 2028220-250 | L50S-250 |  | A50-P250 |
| 90K | 2028220-315 | L50S-300 | - | A50-P300 |
| P110 | 2028220-315 | L50S-350 | - | A50-P350 |
| P132 | 206xx32-400 | L50S-400 | - | A50-P400 |
| P160 | 206xx32-500 | L50S-500 | - | A50-P500 |
| P200 | 206xx32-600 | L50S-600 | - | A50-P600 |
| P250 | 2061032.700 | - | 6.9URD31D08A07 00 | - |
| P315 | 2063032.900 | - | $\begin{aligned} & \text { 6.9URD33D08A09 } \\ & 00 \end{aligned}$ | - |
| P355 | 2063032.900 | - | $\begin{gathered} \text { 6.9URD33D08A09 } \\ 00 \end{gathered}$ | - |
| P400 | 2063032.900 | - | $\begin{aligned} & \text { 6.9URD33D08A09 } \\ & 00 \end{aligned}$ | - |

Ferraz-Shawmut A50QS fuses may be substituted for A50P fuses.
170M fuses shown from Bussmann use the -/80 visual indicator. -TN/80 Type T, -/110 or TN/110 Type $T$ indicator fuses of the same size and amperage may be substituted.
Alternate Fuses 550-600V drives 1 hp
to 10 hp ( 0.75 kW - 7.5 kW )

| FC 300 | Bussmann | Bussmann | Bussmann | Bussmann | Bussmann | Bussmann |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| kW | Type RK1 | Type J | Type T | Type CC | Type CC | Type CC |
| K75-1K5 | KTS-R-5 | JKS-5 | JJS-6 | FNQ-R-5 | KTK-R-5 | LP-CC-5 |
| 2K2-4K0 | KTS-R10 | JKS-10 | JJS-10 | FNQ-R-10 | KTK-R-10 | LP-CC-10 |
| 5K5-7K5 | KTS-R20 | JKS-20 | JJS-20 | FNQ-R-20 | KTK-R-20 | LP-CC-20 |


| FC 300 | SIBA | Littel fuse | Ferraz- <br> Shawmut |
| :--- | :---: | :---: | :---: |
| kW | Type RK1 | Type RK1 | Type RK1 |
| K75-1K5 | $5017906-005$ | KLSR005 | A6K-5R |
| 2K2-4K0 | $5017906-010$ | KLSR010 | A6K-10R |
| $5 K 5-7 K 5$ | $5017906-020$ | KLSR020 | A6K-20R |

Alternate Fuses 525-600V drives 50 hp to 800 hp ( $\mathbf{3 7} \mathrm{kW}$ - 630 kW )

| FC 300 | Bussmann | SIBA | FerrazShawmut |
| :---: | :---: | :---: | :---: |
| kW | JFHR2 | Type RK1 | Type RK1 |
| P37K | 170M3013 | 2061032.125 | 6.6URD30D08A0125 |
| P45K | 170M3014 | 2061032.160 | 6.6URD30D08A0160 |
| P55K | 170M3015 | 2061032.200 | 6.6URD30D08A0200 |
| P75K | 170 M 3015 | 2061032.200 | 6.6URD30D08A0200 |
| P90K | 170M3016 | 2061032.250 | 6.6URD30D08A0250 |
| P110K | 170 M 3017 | 2061032.315 | 6.6URD30D08A0315 |
| P132K | 170M3018 | 2061032.350 | 6.6URD30D08A0350 |
| P160K | 170M4011 | 2061032.350 | 6.6URD30D08A0350 |
| P200K | 170M4012 | 2061032.400 | 6.6URD30D08A0400 |
| P250K | 170M4014 | 2061032.500 | 6.6URD30D08A0500 |
| P315K | 170M5011 | 2062032.550 | 6.6URD32D08A0550 |
| P355K | 170 M 4017 | 2061032.700 | 6.9URD31D08A0700 |
|  | 170M5013 |  |  |
| P400K | 170 M 4017 | 2061032.700 | 6.9URD31D08A0700 |
|  | 170M5013 |  |  |
| P500K | 170 M 6013 | 2063032.900 | 6.9URD33D08A0900 |
| P560K | 170M6013 | 2063032.900 | 6.9URD33D08A0900 |

170M fuses shown from Bussmann use the -/80 visual indicator. -TN/80 Type T, -/110 or TN/110 Type T indicator fuses of the same size and amperage may be substituted.

170M fuses from Bussmann when provided in the 525-600/690 V FC-302 P37K-P75K, FC-102 P75K, or FC-202 P45K-P90K drives are 170M3015.

170M fuses from Bussmann when provided in the 525-600/690V FC-302 P90K-P132, FC-102 P90K-P132, or FC-202 P110-P160 drives are 170M3018.

170M fuses from Bussmann when provided in the 525-600/690V FC302 P160-P315, FC-102 P160-P315, or FC-202 P200-P400 drives are 170M5011.

### 3.3.5. Access to Control Terminals

All terminals to the control cables are located underneath the terminal cover on the front of the adjustable frequency drive. Remove the terminal cover with a screwdriver.

3.10: $A 2$ and $A 3$ enclosures

VLT ${ }^{\circledR}$ AutomationDrive FC 300 Instruction Manual

Remove front cover to access control terminals. When replacing the front cover, ensure proper fastening by applying a torque of 2 Nm.

3.11: $A 5, B 1, B 2, C 1$ and $C 2$ enclosures

### 3.3.6. Electrical Installation, Control Terminals

## To mount the cable to the terminal:

1. Strip isolation of 0.34-0.39 in [9-10 mm]
2. Insert a screw driver ${ }^{1}$ ) in the square hole.
3. Insert the cable in the adjacent circular hole.
4. Remove the screwdriver. The cable is now mounted to the terminal.

## To remove the cable from the terminal:

1. Insert a screw driver ${ }^{1)}$ in the square hole.
2. Pull out the cable.
${ }^{1)}$ Max. $0.015 \times 0.1 \mathrm{in}$. [ $0.4 \times 2.5 \mathrm{~mm}$ ]


Assembling of IP 55 / NEMA Type 12 (A5 housing) with line supply disconnector
The line power switch is placed on the left side on the B1, B2, C1 and C2 enclosures. The line power switch on the A5 enclosure is placed on the right side

VLT® ${ }^{\circledR}$ AutomationDrive FC 300 Instruction
Manual Danfuss 3. How to Install


### 3.4. Connection Examples

### 3.4.1. Start/Stop

Terminal $18=$ Par. 5-10 [8] Start
Terminal 27 = Par. 5-12 [0] No operation (Default coast inverse)
Terminal 37 = Safe stop (where available!)


### 3.4.2. Pulse Start/Stop

Terminal $18=$ Par. 5-10 [9] Latched start Terminal 27= Par. 5-12 [6] Stop inverse Terminal 37 = Safe stop (where available!)


### 3.4.3. Speed Up/Slow

Terminals 29/32 = Speed up/Slow: .
Terminal $18=$ Par. 5-10 [9] Start (default)
Terminal 27 = Par. 5-12 [19] Freeze reference
Terminal 29 = Par. 5-13 [21] Speed up
Terminal 32 = Par. 5-14 [22] Slow


130BA021.12

Note: Terminal 29 only in FC x02 (x=series type).

### 3.4.4. Potentiometer Reference

## Voltage reference via a potentiometer:

Reference Source $1=[1]$ Analog input 53 (default)
Terminal 53, Low Voltage $=0$ Volt Terminal 53, High Voltage $=10$ Volt Terminal 53, Low Ref./Feedback $=0$ RPM

Terminal 53, High Ref./Feedback = 1500 RPM

Switch S201 = OFF (U)

### 3.5.1. Electrical Installation, Control Cables


3.12: Diagram showing all electrical terminals without options.

Terminal 37 is the input to be used for Safe Stop. For instructions on safe stop installation, refer to the section Safe Stop Installation in the FC 300 Design Guide.

* Terminal 37 is not included in the FC 301 (Except the FC 301 A1, which includes Safe Stop).

Terminal 29 and Relay 2 are not included in FC 301.
In rare cases, very long control cables and analog signals may, depending on installation, result in $50 / 60 \mathrm{~Hz}$ ground loops due to noise from line supply cables.

If this occurs, it may be necessary to break the shield or insert a 100 nF capacitor between shield and chassis.

The digital and analog inputs and outputs must be connected separately to the FC 300 common inputs (terminal $20,55,39$ ) to avoid letting ground currents from both groups affect other groups. For example, switching on the digital input may disturb the analog input signal.

Input polarity of control terminals


See section entitled Grounding of Shielded/ Armored Control Cables for the correct termination of control cables.


### 3.5.2. Switches S201, S202, and S801

Switches S201 (A53) and S202 (A54) are used to select a current ( $0-20 \mathrm{~mA}$ ) or a voltage ( -10 to 10 V ) configuration for the analog input terminals 53 and 54 , respectively.

Switch S801 (BUS TER.) can be used to enable termination on the RS-485 port (terminals 68 and 69).

See drawing Diagram showing all electrical terminals in section Electrical Installation.

## Default setting:

S201 (A53) = OFF (voltage input)
S202 (A54) = OFF (voltage input)
S801 (Bus termination) $=$ OFF

When changing the function of S201, S202 or S801, be careful not to force the switch over. Removing the LCP fixture (cradle) when operating the switches is recommended. The switches must not be operated while the adjustable frequency drive is powered.


### 3.6.1. Final Set-Up and Test

To test the set-up and ensure that the adjustable frequency drive is running, follow these steps.
Step 1. Locate the motor nameplate
NOTE
The motor is either star- $(\mathrm{Y})$ or delta-connected $(\Delta)$. This information is located on the motor nameplate data.


Step 2. Enter the motor nameplate data in this parameter list.
To access this list, first press the [QUICK MENU] key, then select "Q2 Quick Set-up".

| 1. | Motor Power [kW] <br> or Motor Power [HP] | par. 1-20 <br> par. 1-21 |
| :---: | :--- | :--- |
| 2. | Motor Voltage | par. 1-22 |
| 3. | Motor Frequency | par. 1-23 |
| 4. | Motor Current | par. 1-24 |
| 5. | Motor Nominal Speed | par. 1-25 |

## Step 3. Activate the Automatic Motor

 Adaptation (AMA)Performing an AMA will ensure optimum performance. The AMA measures the values from the motor model equivalent diagram.

1. Connect terminal 37 to terminal 12 (if terminal 37 is available).
2. Connect terminal 27 to terminal 12, or set par. 5-12 to 'No function' (par. 5-12 [0])
3. Activate the AMA par. 1-29.
4. Choose between complete or reduced AMA. If a sine-wave filter is mounted, run only the reduced AMA, or remove the sine-wave filter during the AMA procedure.
5. Press the [OK] key. The display shows "Press [Hand on] to start."
6. Press the [Hand on] key. A progress bar indicates if the AMA is in progress.

## Stop the AMA during operation.

1. Press the [OFF] key. The adjustable frequency drive enters into alarm mode and the display shows that the AMA was terminated by the user.

## Successful AMA

1. The display shows "Press [OK] to finish AMA."
2. Press the [OK] key to exit the AMA state.

## Unsuccessful AMA

1. The adjustable frequency drive enters into alarm mode. A description of the alarm can be found in the Warnings and Alarms chapter.
2. "Report Value" in the [Alarm Log] shows the last measuring sequence carried out by the AMA before the adjustable frequency drive entered alarm mode. This number, along with the description of the alarm, will assist you in troubleshooting. If you contact Danfoss for service, make sure to mention the number and alarm description.

## NOTE

Unsuccessful AMA is often caused by incorrectly registered motor nameplate data or a difference that is too large between the motor power size and the adjustable frequency drivepower size.

Step 4. Set speed limit and ramp time

| Minimum Reference | par. 3-02 |
| :--- | :--- |
| Maximum Reference | par. 3-03 |

3.1: Set up the desired limits for speed and ramp time.


[^0]
### 3.7. Additional Connections

### 3.7.1. Mechanical Brake Control

In hoisting/lowering applications, it is necessary to be able to control an electromechanical brake:

- Control the brake using any relay output or digital output (terminal 27 or 29).
- Keep the output closed (voltage-free) as long as the adjustable frequency drive is unable to 'support' the motor, such as when the load is too heavy, for example.
- Select Mechanical brake control [32] in par. 5-4* for applications with an electro-mechanical brake.
- The brake is released when the motor current exceeds the preset value found in par. 2-20.
- The brake is engaged when the output frequency is less than the frequency found in par. 2-21 or 2-22, and only if the adjustable frequency drive carries out a stop command.

If the adjustable frequency drive is in alarm mode or in an overvoltage situation, the mechanical brake immediately cuts in.

### 3.7.2. Parallel Connection of Motors

The adjustable frequency drive can control several parallel-connected motors. The total current consumption of the motors must not exceed the rated output current $I_{M, N}$ for the adjustable frequency drive.


## NOTE

Installation with cables connected in a common joint, as in the illustration below, is only recommended for short cable lengths.

## NOTE

When motors are connected in parallel, par. 1-29 Automatic Motor Adaptation (AMA) cannot be used.


## NOTE

The electronic thermal relay (ETR) of the adjustable frequency drive cannot be used for motor protection for the individual motor of systems with parallelconnected motors. Provide fur-
 ther motor protection with, for example, thermistors in each motor or individual thermal relays (circuit breakers are not suitable for protection).

Problems may arise at start and at low RPM values if motor sizes are widely different because small motors' relatively high ohmic resistance in the stator calls for a higher voltage at start and at low RPM values.

### 3.7.3. Motor Thermal Protection

The electronic thermal relay in the adjustable frequency drive has received UL approval for single motor protection when par. 1-90 Motor Thermal Protection is set for ETR Trip and par. 1-24 Motor current, $I_{M, N}$ is set to the rated motor current (see motor nameplate).
For thermal motor protection, it is also possible to use the MCB 112 PTC thermistor card option. This card provides an ATEX certificate to protect motors in explosion hazard areas, Zone 1/21 and Zone $2 / 22$. Please refer to the Design Guide for further information.

## 4. How to Program

### 4.1. The Graphical and Numerical LCP

The easiest way to program the adjustable frequency drive is to use the Graphical Local Control Panel (LCP 102). It is necessary to consult the adjustable frequency drive Design Guide when using the Numeric Local Control Panel (LCP 101).

### 4.1.1. How to Program on the Graphical LCP

The following instructions are valid for the graphical LCP (LCP 102):

## The control panel is divided into four functional groups:

1. Graphical display with status lines.
2. Menu keys and LEDs - changing parameters and switching between display functions.
3. Navigation keys and indicator lights (LEDs).
4. Operation keys and LEDs.

All data is displayed in a graphical LCP display, which can show up to five items of operating data while displaying [Status].

## Display lines:

a. Status line: Status messages displaying icons and graphics. 1
b. Line 1-2: Operator data lines displaying data defined or chosen by the user. By pressing the [Status] key, up to one extra line can be added. 1
c. Status line: Status messages displaying text. 1

### 4.1.2. How to Program on the Numerical Local Control Panel

The following instructions are valid for the numerical LCP (LCP 101):

The control panel is divided into four functional groups:

1. Numerical display.
2. Menu keys and LEDs - changing parameters and switching between display functions.
3. Navigation keys and indicator lights (LEDs).
4. Operation keys and LEDs.


### 4.1.3. Initial Commissioning

The easiest way of carrying out the initial commissioning is by using the Quick Menu button and follow the quick set-up procedure using LCP 102 (read table from left to right):


### 4.2. Quick Setup

| 0-01 | Language |
| :--- | :--- |
| Option: | Function: |
|  |  |
| Defines the language to be used in the display. |  |
| The adjustable frequency drive can be delivered with 4 different |  |
| language packages. English and German are included in all |  |
| packages. English cannot be erased or manipulated. |  |

## 1-20 Motor Power

## Range:

Size re- [0.12-1,600
lated* [0.09-1,200 kW]]

## Function:

hp Enter the nominal motor power (in kW ) according to the motor nameplate data. The default value corresponds to the nominal rated output of the unit.
This parameter cannot be adjusted while the motor is running. This parameter is visible in LCP if par. 0-03 is International [0].

## Range:

Size re-[10-1,000 V] lated*

## Function:

Enter the nominal motor voltage according to the motor nameplate data. The default value corresponds to the nominal rated output of the unit.
This parameter cannot be adjusted while the motor is running.

## 1-23 Motor Frequency

## Option:

## Function:

Min - Max motor frequency: $20-1,000 \mathrm{~Hz}$
Select the motor frequency value from the motor nameplate data. If a value different from 50 Hz or 60 Hz is selected, it is necessary to adapt the load independent settings in par. 1-50 to $1-53$. For 87 Hz operation with $230 / 400 \mathrm{~V}$ motors, set the nameplate data for $230 \mathrm{~V} / 50 \mathrm{~Hz}$. Adapt par. 4-13 Motor Speed High Limit (RPM) and par. 3-03 Maximum Reference to the 87 Hz application.

```
[50] * 50 Hz when parame-
    ter 0-03 = interna-
    tional
[60] 60 Hz when parame-
    ter 0-03 = US
```


## 1-24 Motor Current

## Range:

Size re-[0.1-10,000 A] lated*

## Function:

Enter the nominal motor current value from the motor nameplate data. This data is used for calculating motor torque, motor thermal protection, etc.

This parameter cannot be adjusted while the motor is running.

## 1-25 Motor Nominal Speed

Range:
Size re-[100-60,000 rpm] lated*

## Function:

Enter the nominal motor speed value from the motor nameplate data. This data is used for calculating automatic motor compensations.

This parameter cannot be adjusted while the motor is running.

5-12 Terminal 27 Digital Input

## Option:

## Function:

Select the function from the available digital input range.

|  |  |
| :--- | ---: |
| No operation | $[0]$ |
| Coast inverse | $[1]$ |
| Coast and reset inverse | $[2]$ |
| Quick stop inverse | $[3]$ |
| DC brake inverse | $[4]$ |
| Stop inverse | $[5]$ |
| Start | $[8]$ |
| Latched start | $[9]$ |
| Reversing | $[10]$ |
| Start reverse | $[11]$ |
| Enable start forward | $[12]$ |
| Enable start reverse | $[13]$ |
| Jog | $[14]$ |
| Preset ref bit 0 | $[16]$ |
| Preset ref bit 1 | $[17]$ |
| Preset ref bit 2 | $[18]$ |
| Freeze reference | $[19]$ |
| Freeze output | $[20]$ |
| Speed up | $[21]$ |
| Slow | $[22]$ |
| Set-up select bit 0 | $[23]$ |
| Set-up select bit 1 | $[24]$ |
| Catch up | $[28]$ |
| Slow-down | $[29]$ |
| Pulse input | $[32]$ |
| Ramp bit 0 | $[34]$ |
| Ramp bit 1 | $[35]$ |
| Line failure inverse | $[36]$ |
| DigiPot Increase | $[55]$ |
| DigiPot Decrease | $[56]$ |
| DigiPot Clear | $[57]$ |
| Reset Counter A | $[65]$ |
| Reset Counter B |  |
|  |  |

1-29 Automatic Motor Adaptation (AMA)

## Option:

## Function:

The AMA function optimizes dynamic motor performance by automatically optimizing the advanced motor parameters (par. 1-30 to par. 1-35) during motor standstill.
Activate the AMA function by pressing [Hand on] after selecting [1] or [2]. See also the section Automatic Motor Adaptation. After a normal sequence, the display will read: "Press [OK] to finish AMA". After pressing the [OK] key, the adjustable frequency drive is ready for operation.
This parameter cannot be adjusted while the motor is running.

## [0] * OFF

[1] Enable complete AMA Performs AMA of the stator resistance $\mathrm{Rs}_{\mathrm{s}}$, the rotor resistance $R_{r}$, the stator leakage reactance $X_{1}$, the rotor leakage reactance $X_{2}$ and the main reactance $X_{h}$. Select this option if an LC filter is used between the drive and the motor.
FC 301: The complete AMA does not include $X_{h}$ measurement for the FC 301. Instead, the $X_{h}$ value is determined from the motor database. Par. 1-35 Main Reactance $\left(X_{h}\right)$ may be adjusted to obtain optimal start performance.
[2] Enable reduced AMA Performs a reduced AMA of the stator resistance $R_{s}$ in the system only.

## Note:

- For the best adaptation of the adjustable frequency drive, run the AMA on a cold motor.
- AMA cannot be performed while the motor is running.
- AMA cannot be performed on permanent magnet motors.


## NOTE

It is important to set motor par. 1-2* Motor Data correctly, since these form part of the AMA algorithm. An AMA must be performed to achieve optimum dynamic motor performance. It may take up to 10 min , depending on the power rating of the motor.

## NOTE

Avoid generating external torque during AMA.

## NOTE

If one of the settings in par. 1-2* Motor Data is changed, par. 1-30 to 1-39, the advanced motor parameters will return to default setting.

## 3-02 Minimum Reference

Range:

## Function:

$0.000 \quad[-100000.000$ - par. The Minimum reference is the minimum value obtained by the Unit* 3-03] sum of all references. Minimum reference is only active if Min Max [0] is set in par. 3-00.

3-03 Maximum Reference

## Range:

1500.00 [Par. 3-02

0* 100000.000]

## Function:

Enter the maximum reference. The maximum reference is the highest value obtainable by adding all references together.

The Maximum Reference unit matches:

- The choice of configuration in par. 1-00 Configuration Mode: for Speed closed-loop [1], RPM; for Torque [2], Nm.
- The unit selected in par. 3-01 Reference/Feedback Unit.


## 3-41 Ramp 1 Ramp-up Time

## Range:

s* $\quad[0.01-3600.00 \mathrm{~s}]$

## Function:

Enter the ramp-up time, i.e., the acceleration time from 0 RPM to the rated motor speed $\mathrm{n}_{\mathrm{M}, \mathrm{N}}$ (par. 1-25). Choose a ramp-up time such that the output current does not exceed the current limit in par. $4-18$ during ramping. The value 0.00 corresponds to 0.01 sec . in speed mode. See ramp-down time in par. 3-42.
Par. 3-41 $=\frac{t_{a c c}[s] \times \mathrm{n}_{M, N}(\text { par. } 1-25)[R P M]}{\Delta \operatorname{ref}[R P M]}$


## 3-42 Ramp 1 Ramp-down Time

## Range:

Size re-[0.01-3600.00 s] lated

## Function:

Enter the ramp-down time, i.e., the deceleration time from the rated motor speed $n_{M, N}$ (par. 1-25) to 0 RPM. Choose a rampdown time so that no overvoltage arises in the inverter due to regenerative operation of the motor, and so that the generated current does not exceed the current limit set in par. 4-18. The
value 0.00 corresponds to 0.01 s in speed mode. See ramp-up time in par. 3-41.
Par. $3-42=\frac{t_{a c c}[s] \times n_{M, N}(\text { par. } 1-25)[R P M]}{\Delta \operatorname{ref}[R P M]}$

### 4.3. Parameter Lists

Changes during operation
"TRUE" means that the parameter can be changed while the adjustable frequency drive is in operation, and "FALSE" means that it must be stopped before a change can be made.

4-Set-up
'All set-up': the parameters can be set individually in each of the four set-ups, i.e., one single parameter can have four different data values.
' 1 set-up': the data value will be the same in all set-ups.

Conversion index
This number refers to a conversion figure used when writing or reading to and from the adjustable frequency drive.


| Data type | Description | Type |
| :--- | :--- | :--- |
| 2 | Integer 8 | Int8 |
| 3 | Integer 16 | Int16 |
| 4 | Integer 32 | Int32 |
| 5 | Unsigned 8 | Uint8 |
| 6 | Unsigned 16 | Uint16 |
| 7 | Unsigned 32 | Uint32 |
| 9 | Visible String | VisStr |
| 33 | Normalized value 2 bytes | N2 |
| 35 | Bit sequence of 16 Boolean variables | V2 |
| 54 | Time difference w/o date | TimD |

See the adjustable frequency drive Design Guide for further information about data types 33, 35 and 54 .
Parameters for the adjustable frequency drive are grouped into various parameter groups for easy selection of the correct parameters for optimized operation of the adjustable frequency drive.
$0-x x$ Operation and display parameters for basic adjustable frequency drive settings

1-xx Load and motor parameters, includes all load and motor-related parameters

2-xx Brake parameters

3-xx References and ramping parameters, includes DigiPot function

4-xx Limits warnings, setting of limits and warning parameters
5-xx Digital inputs and outputs, includes relay controls

6-xx Analog inputs and outputs
7-xx Controls, setting parameters for speed and process controls
$8-x x$ Communication and option parameters, setting of FC RS485 and FC USB port parameters.
9-xx Profibus parameters

10-xx DeviceNet and CAN Serial Communication parameters
13-xx Smart Logic Control parameters
$14-x x$ Special function parameters
$15-x x$ Drive information parameters
16-xx Readout parameters

17-xx Encoder option parameters
32-xx MCO 305 Basic parameters
33-xx MCO 305 Advanced parameters

34-xx MCO Data Readout parameters

### 4.3.1. 0 -** Operation/Display

| Par. No. Parameter description <br> $\#$ | Default value | 4-set-up | $\begin{gathered} \text { FC } 302 \\ \text { only } \end{gathered}$ | Change during operation | Conversion index | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0-0* Basic Settings |  |  |  |  |  |  |
| 0-01 Language | [0] English | 1 set-up |  | TRUE | - | Uint8 |
| 0-02 Motor Speed Unit | [0] RPM | 2 set-ups |  | FALSE | - | Uint8 |
| 0-03 Regional Settings | [0] International | 2 set-ups |  | FALSE | - | Uint8 |
| 0-04 Operating State at Power-up (Hand) | [1] Forced stop, ref=old | All set-ups |  | TRUE | - | Uint8 |
| 0-1* Set-up Operations |  |  |  |  |  |  |
| 0-10 Active Set-up | [1] Set-up 1 | 1 set-up |  | TRUE | - | Uint8 |
| 0-11 Edit Set-up | [1] Set-up 1 | All set-ups |  | TRUE | - | Uint8 |
| 0-12 This Set-up Linked to | [0] Not linked | All set-ups |  | FALSE | - | Uint8 |
| 0-13 Readout: Linked Set-ups | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | FALSE | 0 | Uint16 |
| 0-14 Readout: Edit Set-ups / Channel | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | TRUE | 0 | Int32 |
| 0-2* LCP Display |  |  |  |  |  |  |
| 0-20 Display Line 1.1 Small | 1617 | All set-ups |  | TRUE | - | Uint16 |
| 0-21 Display Line 1.2 Small | 1614 | All set-ups |  | TRUE | - | Uint16 |
| 0-22 Display Line 1.3 Small | 1610 | All set-ups |  | TRUE | - | Uint16 |
| 0-23 Display Line 2 Large | 1613 | All set-ups |  | TRUE | - | Uint16 |
| 0-24 Display Line 3 Large | 1602 | All set-ups |  | TRUE | - | Uint16 |
| 0-25 My Personal Menu | ExpressionLimit | 1 set-up |  | TRUE | 0 | Uint16 |
| 0-3* LCP Cust. Readout |  |  |  |  |  |  |
| 0-30 Unit for User-defined Readout | [0] None | All set-ups |  | TRUE | - | Uint8 |
| 0-31 Min Value of User-defined Readout | 0.00 CustomReadoutUnit | All set-ups |  | TRUE | -2 | Int32 |
| 0-32 Max Value of User-defined Readout | 100.00 CustomReadoutUnit | All set-ups |  | TRUE | -2 | Int32 |
| 0-4* LCP Keypad |  |  |  |  |  |  |
| 0-40 [Hand on] Key on LCP | [1] Enabled | All set-ups |  | TRUE | - | Uint8 |
| 0-41 [Off] Key on LCP | [1] Enabled | All set-ups |  | TRUE | - | Uint8 |
| 0-42 [Auto on] Key on LCP | [1] Enabled | All set-ups |  | TRUE | - | Uint8 |
| 0-43 [Reset] Key on LCP | [1] Enabled | All set-ups |  | TRUE | - | Uint8 |
| 0-5* Copy/Save |  |  |  |  |  |  |
| 0-50 LCP Copy | [0] No copy | All set-ups |  | FALSE | - | Uint8 |
| 0-51 Set-up Copy | [0] No copy | All set-ups |  | FALSE | - | Uint8 |
| 0-6* Password |  |  |  |  |  |  |
| 0-60 Main Menu Password | $100 \mathrm{~N} / \mathrm{A}$ | 1 set-up |  | TRUE | 0 | Int16 |
| 0-61 Access to Main Menu w/o Password | [0] Full access | 1 set-up |  | TRUE |  | Uint8 |
| 0-65 Quick Menu Password | 200 N/A | 1 set-up |  | TRUE | 0 | Int16 |
| 0-66 Access to Quick Menu w/o Password | [0] Full access | 1 set-up |  | TRUE | - | Uint8 |
| 0-67 Bus Password Access | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | TRUE | 0 | Uint16 |


| Par. No. Parameter description \# | Default value | 4-set-up | $\begin{gathered} \text { FC } 302 \\ \text { only } \end{gathered}$ | Change during operation | Conversion index | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1-6* Load-Depend. Settg. |  |  |  |  |  |  |
| 1-60 Low Speed Load Compensation | 100 \% | All set-ups |  | TRUE | 0 | Int16 |
| 1-61 High Speed Load Compensation | $100 \%$ | All set-ups |  | TRUE | 0 | Int16 |
| 1-62 Slip Compensation | ExpressionLimit | All set-ups |  | TRUE | 0 | Int16 |
| 1-63 Slip Compensation Time Constant | ExpressionLimit | All set-ups |  | TRUE | -2 | Uint16 |
| 1-64 Resonance Dampening | 100 \% | All set-ups |  | TRUE | 0 | Uint16 |
| 1-65 Resonance Dampening Time Constant | 5 ms | All set-ups |  | TRUE | -3 | Uint8 |
| 1-66 Min. Current at Low Speed | 100 \% | All set-ups | x | TRUE | 0 | Uint8 |
| 1-67 Load Type | [0] Passive load | All set-ups | x | TRUE | - | Uint8 |
| 1-68 Minimum Inertia | ExpressionLimit | All set-ups | x | FALSE | -4 | Uint32 |
| 1-69 Maximum Inertia | ExpressionLimit | All set-ups | x | FALSE | -4 | Uint32 |
| 1-7* Start Adjustments |  |  |  |  |  |  |
| 1-71 Start Delay | 0.0 s | All set-ups |  | TRUE | -1 | Uint8 |
| 1-72 Start Function | [2] Coast/delay time | All set-ups |  | TRUE | - | Uint8 |
| 1-73 Flying Start | [0] Disabled | All set-ups |  | FALSE | - | Uint8 |
| 1-74 Start Speed [RPM] | ExpressionLimit | All set-ups |  | TRUE | 67 | Uint16 |
| 1-75 Start Speed [ Hz ] | ExpressionLimit | All set-ups |  | TRUE | -1 | Uint16 |
| 1-76 Start Current | 0.00 A | All set-ups |  | TRUE | -2 | Uint32 |
| 1-8* Stop Adjustments |  |  |  |  |  |  |
| 1-80 Function at Stop | [0] Coast | All set-ups |  | TRUE | - | Uint8 |
| 1-81 Min Speed for Function at Stop [RPM] | ExpressionLimit | All set-ups |  | TRUE | 67 | Uint16 |
| 1-82 Min Speed for Function at Stop [Hz] | ExpressionLimit | All set-ups |  | TRUE | -1 | Uint16 |
| 1-83 Precise Stop Function | [0] Precise ramp stop | All set-ups |  | FALSE | - | Uint8 |
| 1-84 Precise Stop Counter Value | 100000 N/A | All set-ups |  | TRUE | 0 | Uint32 |
| 1-85 Precise Stop Speed Compensation Delay | 10 ms | All set-ups |  | TRUE | -3 | Uint8 |
| 1-9* Motor Temperature |  |  |  |  |  |  |
| 1-90 Motor Thermal Protection | [0] No protection | All set-ups |  | TRUE | - | Uint8 |
| 1-91 Motor External Fan | [0] No | All set-ups |  | TRUE | - | Uint16 |
| 1-93 Thermistor Resource | [0] None | All set-ups |  | TRUE | - | Uint8 |
| 1-95 KTY Sensor Type | [0] KTY Sensor 1 | All set-ups | x | TRUE | - | Uint8 |
| 1-96 KTY Thermistor Resource | [0] None | All set-ups | x | TRUE | - | Uint8 |
| 1-97 KTY Threshold level | $80^{\circ} \mathrm{C}$ | 1 set-up | x | TRUE | 100 | Int16 |


| Par. No. <br> \# | Parameter description | Default value | 4-set-up | $\begin{gathered} \text { FC } 302 \\ \text { only } \end{gathered}$ | Change during operation | Conversion index | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2-0* DC Brake |  |  |  |  |  |  |  |
| 2-00 | DC Hold Current | 50 \% | All set-ups |  | TRUE | 0 | Uint8 |
| 2-01 | DC Brake Current | 50 \% | All set-ups |  | TRUE | 0 | Uint16 |
| 2-02 | DC Braking Time | 10.0 s | All set-ups |  | TRUE | -1 | Uint16 |
| 2-03 | DC Brake Cut-in Speed [RPM] | ExpressionLimit | All set-ups |  | TRUE | 67 | Uint16 |
| 2-04 | DC Brake Cut-in Speed [Hz] | ExpressionLimit | All set-ups |  | TRUE | -1 | Uint16 |
| 2-1* Brake Energy Funct. |  |  |  |  |  |  |  |
| 2-10 | Brake Function | null | All set-ups |  | TRUE | - | Uint8 |
| 2-11 | Brake Resistor (ohm) | ExpressionLimit | All set-ups |  | TRUE | -2 | Uint32 |
| 2-12 | Brake Power Limit (kW) | ExpressionLimit | All set-ups |  | TRUE | 0 | Uint32 |
| 2-13 | Brake Power Monitoring | [0] Off | All set-ups |  | TRUE | - | Uint8 |
| 2-15 | Brake Check | [0] Off | All set-ups |  | TRUE | - | Uint8 |
| 2-16 | AC Brake Max. Current | 100.0 \% | All set-ups |  | TRUE | -1 | Uint32 |
| 2-17 | Over-voltage Control | [0] Disabled | All set-ups |  | TRUE | - | Uint8 |
| 2-2* Mechanical Brake |  |  |  |  |  |  |  |
| 2-20 | Release Brake Current | ImaxVLT (P1637) | All set-ups |  | TRUE | -2 | Uint32 |
| 2-21 | Activate Brake Speed [RPM] | ExpressionLimit | All set-ups |  | TRUE | 67 | Uint16 |
| 2-22 | Activate Brake Speed [Hz] | ExpressionLimit | All set-ups |  | TRUE | -1 | Uint16 |
| 2-23 | Activate Brake Delay | 0.0 s | All set-ups |  | TRUE | -1 | Uint8 |
| 2-24 | Stop Delay | 0.0 s | All set-ups |  | TRUE | -1 | Uint8 |
| 2-25 | Brake Release Time | 0.20 s | All set-ups |  | TRUE | -2 | Uint16 |
| 2-26 | Torque Ref | 0.00 \% | All set-ups |  | TRUE | -2 | Int16 |
| 2-27 | Torque Ramp Time | 0.2 s | All set-ups |  | TRUE | -1 | Uint8 |
| 2-28 | Gain Boost Factor | 1.00 N/A | All set-ups |  | TRUE | -2 | Uint16 |

### 4.3.4. 3-** Reference / Ramps

| Par. No. Parameter description \# | Default value | 4-set-up | $\begin{gathered} \text { FC } 302 \\ \text { only } \end{gathered}$ | Change during operation | Conversion index | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3-0* Reference Limits |  |  |  |  |  |  |
| 3-00 Reference Range | null | All set-ups |  | TRUE | - | Uint8 |
| 3-01 Reference/Feedback Unit | null | All set-ups |  | TRUE | - | Uint8 |
| 3-02 Minimum Reference | 0 ReferenceFeedbackUnit | All set-ups |  | TRUE | -3 | Int32 |
| 3-03 Maximum Reference | ExpressionLimit | All set-ups |  | TRUE | -3 | Int32 |
| 3-04 Reference Function | [0] Sum | All set-ups |  | TRUE | - | Uint8 |
| 3-1* References |  |  |  |  |  |  |
| 3-10 Preset Reference | 0.00 \% | All set-ups |  | TRUE | -2 | Int16 |
| 3-11 Jog Speed [Hz] | ExpressionLimit | All set-ups |  | TRUE | -1 | Uint16 |
| 3-12 Catch up/slow-down Value | 0.00 \% | All set-ups |  | TRUE | -2 | Int16 |
| 3-13 Reference Site | [0] Linked to Hand / Auto | All set-ups |  | TRUE | - | Uint8 |
| 3-14 Preset Relative Reference | 0.00 \% | All set-ups |  | TRUE | -2 | Int32 |
| 3-15 Reference Resource 1 | null | All set-ups |  | TRUE | - | Uint8 |
| 3-16 Reference Resource 2 | null | All set-ups |  | TRUE | - | Uint8 |
| 3-17 Reference Resource 3 | null | All set-ups |  | TRUE | - | Uint8 |
| 3-18 Relative Scaling Reference Resource | [0] No function | All set-ups |  | TRUE | - | Uint8 |
| 3-19 Jog Speed [RPM] | ExpressionLimit | All set-ups |  | TRUE | 67 | Uint16 |
| 3-4* Ramp 1 |  |  |  |  |  |  |
| 3-40 Ramp 1 Type | [0] Linear | All set-ups |  | TRUE | - | Uint8 |
| 3-41 Ramp 1 Ramp-up Time | ExpressionLimit | All set-ups |  | TRUE | -2 | Uint32 |
| 3-42 Ramp 1 Ramp-down Time | ExpressionLimit | All set-ups |  | TRUE | -2 | Uint32 |
| 3-45 Ramp 1 S-ramp Ratio at Accel. Start | 50 \% | All set-ups |  | TRUE | 0 | Uint8 |
| 3-46 Ramp 1 S-ramp Ratio at Accel. End | 50 \% | All set-ups |  | TRUE | 0 | Uint8 |
| 3-47 Ramp 1 S-ramp Ratio at Decel. Start | 50 \% | All set-ups |  | TRUE | 0 | Uint8 |
| 3-48 Ramp 1 S-ramp Ratio at Decel. End | 50 \% | All set-ups |  | TRUE | 0 | Uint8 |
| 3-5* Ramp 2 |  |  |  |  |  |  |
| 3-50 Ramp 2 Type | [0] Linear | All set-ups |  | TRUE | - | Uint8 |
| 3-51 Ramp 2 Ramp-up Time | ExpressionLimit | All set-ups |  | TRUE | -2 | Uint32 |
| 3-52 Ramp 2 Ramp-down Time | ExpressionLimit | All set-ups |  | TRUE | -2 | Uint32 |
| 3-55 Ramp 2 S-ramp Ratio at Accel. Start | 50 \% | All set-ups |  | TRUE | 0 | Uint8 |
| 3-56 Ramp 2 S-ramp Ratio at Accel. End | 50 \% | All set-ups |  | TRUE | 0 | Uint8 |
| 3-57 Ramp 2 S-ramp Ratio at Decel. Start | 50 \% | All set-ups |  | TRUE | 0 | Uint8 |
| 3-58 Ramp 2 S-ramp Ratio at Decel. End | 50 \% | All set-ups |  | TRUE | 0 | Uint8 |

### 4.3.5. 4-** Limits / Warnings

| Par. No. Parameter description \# | Default value | 4-set-up | $\text { FC } 302$ | Change during operation | Conversion index | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4-1* Motor Limits |  |  |  |  |  |  |
| 4-10 Motor Speed Direction | null | All set-ups |  | FALSE | - | Uint8 |
| 4-11 Motor Speed Low Limit [RPM] | ExpressionLimit | All set-ups |  | TRUE | 67 | Uint16 |
| 4-12 Motor Speed Low Limit [Hz] | ExpressionLimit | All set-ups |  | TRUE | -1 | Uint16 |
| 4-13 Motor Speed High Limit [RPM] | ExpressionLimit | All set-ups |  | TRUE | 67 | Uint16 |
| 4-14 Motor Speed High Limit [Hz] | ExpressionLimit | All set-ups |  | TRUE | -1 | Uint16 |
| 4-16 Torque Limit Motor Mode | ExpressionLimit | All set-ups |  | TRUE | -1 | Uint16 |
| 4-17 Torque Limit Generator Mode | 100.0 \% | All set-ups |  | TRUE | -1 | Uint16 |
| 4-18 Current Limit | ExpressionLimit | All set-ups |  | TRUE | -1 | Uint32 |
| 4-19 Max Output Frequency | 132.0 Hz | All set-ups |  | FALSE | -1 | Uint16 |
| 4-2* Limit Factors |  |  |  |  |  |  |
| 4-20 Torque Limit Factor Source | [0] No function | All set-ups |  | TRUE | - | Uint8 |
| 4-21 Speed Limit Factor Source | [0] No function | All set-ups |  | TRUE | - | Uint8 |
| 4-3* Motor Fb Monitor |  |  |  |  |  |  |
| 4-30 Motor Feedback Loss Function | [2] Trip | All set-ups |  | TRUE | - | Uint8 |
| 4-31 Motor Feedback Speed Error | 300 RPM | All set-ups |  | TRUE | 67 | Uint16 |
| 4-32 Motor Feedback Loss Timeout | 0.05 s | All set-ups |  | TRUE | -2 | Uint16 |
| 4-5* Adj. Warnings |  |  |  |  |  |  |
| 4-50 Warning Current Low | 0.00 A | All set-ups |  | TRUE | -2 | Uint32 |
| 4-51 Warning Current High | ImaxVLT (P1637) | All set-ups |  | TRUE | -2 | Uint32 |
| 4-52 Warning Speed Low | 0 RPM | All set-ups |  | TRUE | 67 | Uint16 |
| 4-53 Warning Speed High | outputSpeedHighLimit (P413) | All set-ups |  | TRUE | 67 | Uint16 |
| 4-54 Warning Reference Low | -999999.999 N/A | All set-ups |  | TRUE | -3 | Int32 |
| 4-55 Warning Reference High | 999999.999 N/A | All set-ups |  | TRUE | -3 | Int32 |
| 4-56 Warning Feedback Low | -999999.999 ReferenceFeedbackUnit | All set-ups |  | TRUE | -3 | Int32 |
| 4-57 Warning Feedback High | 999999.999 ReferenceFeedbackUnit | All set-ups |  | TRUE | -3 | Int32 |
| 4-58 Missing Motor Phase Function | [1] On | All set-ups |  | TRUE | - | Uint8 |
| 4-6* Speed Bypass |  |  |  |  |  |  |
| 4-60 Bypass Speed From [RPM] | ExpressionLimit | All set-ups |  | TRUE | 67 | Uint16 |
| 4-61 Bypass Speed From [Hz] | ExpressionLimit | All set-ups |  | TRUE | -1 | Uint16 |
| 4-62 Bypass Speed to [RPM] | ExpressionLimit | All set-ups |  | TRUE | 67 | Uint16 |
| 4-63 Bypass Speed To [Hz] | ExpressionLimit | All set-ups |  | TRUE | -1 | Uint16 |


| Par. No. Parameter description \# | Default value | 4-set-up | $\begin{aligned} & \text { FC } 302 \\ & \text { only } \end{aligned}$ | Change during operation | Conversion index | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5-0* Digital I/O mode |  |  |  |  |  |  |
| 5-00 Digital I/O Mode | [0] PNP | All set-ups |  | FALSE | - | Uint8 |
| 5-01 Terminal 27 Mode | [0] Input | All set-ups |  | TRUE | - | Uint8 |
| 5-02 Terminal 29 Mode | [0] Input | All set-ups | x | TRUE | - | Uint8 |
| 5-1* Digital Inputs |  |  |  |  |  |  |
| 5-10 Terminal 18 Digital Input | null | All set-ups |  | TRUE | - | Uint8 |
| 5-11 Terminal 19 Digital Input | null | All set-ups |  | TRUE | - | Uint8 |
| 5-12 Terminal 27 Digital Input | null | All set-ups |  | TRUE | - | Uint8 |
| 5-13 Terminal 29 Digital Input | null | All set-ups | x | TRUE | - | Uint8 |
| 5-14 Terminal 32 Digital Input | [0] No operation | All set-ups |  | TRUE | - | Uint8 |
| 5-15 Terminal 33 Digital Input | [0] No operation | All set-ups |  | TRUE | - | Uint8 |
| 5-16 Terminal X30/2 Digital Input | [0] No operation | All set-ups |  | TRUE | - | Uint8 |
| 5-17 Terminal X30/3 Digital Input | [0] No operation | All set-ups |  | TRUE | - | Uint8 |
| 5-18 Terminal X30/4 Digital Input | [0] No operation | All set-ups |  | TRUE | - | Uint8 |
| 5-19 Terminal 37 Safe Stop | [1] Safe Stop Alarm | 1 set-up | x | TRUE | - | Uint8 |
| 5-3* Digital Outputs |  |  |  |  |  |  |
| 5-30 Terminal 27 Digital Output | null | All set-ups |  | TRUE | - | Uint8 |
| 5-31 Terminal 29 digital Output | null | All set-ups | x | TRUE | - | Uint8 |
| 5-32 Term X30/6 Digi Out (MCB 101) | null | All set-ups |  | TRUE | - | Uint8 |
| 5-33 Term X30/7 Digi Out (MCB 101) | null | All set-ups |  | TRUE | - | Uint8 |
| 5-4* Relays |  |  |  |  |  |  |
| 5-40 Function Relay | null | All set-ups |  | TRUE | - | Uint8 |
| 5-41 On Delay, Relay | 0.01 s | All set-ups |  | TRUE | -2 | Uint16 |
| 5-42 Off Delay, Relay | 0.01 s | All set-ups |  | TRUE | -2 | Uint16 |
| 5-5* Pulse Input |  |  |  |  |  |  |
| 5-50 Term. 29 Low Frequency | 100 Hz | All set-ups | x | TRUE | 0 | Uint32 |
| 5-51 Term. 29 High Frequency | 100 Hz | All set-ups | x | TRUE | 0 | Uin32 |
| 5-52 Term. 29 Low Ref./Feedb. Value | 0.000 ReferenceFeedbackUnit | All set-ups | x | TRUE | -3 | Int32 |
| 5-53 Term. 29 High Ref./Feedb. Value | ExpressionLimit | All set-ups | x | TRUE | -3 | Int32 |
| 5-54 Pulse Filter Time Constant \#29 | 100 ms | All set-ups | x | FALSE | -3 | Uint16 |
| 5-55 Term. 33 Low Frequency | 100 Hz | All set-ups |  | TRUE | 0 | Uint32 |
| 5-56 Term. 33 High Frequency | 100 Hz | All set-ups |  | TRUE | 0 | Uint32 |
| 5-57 Term. 33 Low Ref./Feedb. Value | 0.000 ReferenceFeedbackUnit | All set-ups |  | TRUE | -3 | Int32 |
| 5-58 Term. 33 High Ref./Feedb. Value | ExpressionLimit | All set-ups |  | TRUE | -3 | Int32 |
| 5-59 Pulse Filter Time Constant \#33 | 100 ms | All set-ups |  | FALSE | -3 | Uint16 |


| Par. No. Parameter description \# | Default value | 4-set-up | $\begin{gathered} \text { FC } 302 \\ \text { only } \end{gathered}$ | Change during operation | Conversion index | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5-6* Pulse Output |  |  |  |  |  |  |
| 5-60 Terminal 27 Pulse Output Variable | null | All set-ups |  | TRUE | - | Uint8 |
| 5-62 Pulse Output Max Freq \#27 | ExpressionLimit | All set-ups |  | TRUE | 0 | Uint32 |
| 5-63 Terminal 29 Pulse Output Variable | null | All set-ups | x | TRUE | - | Uint8 |
| 5-65 Pulse Output Max Freq \#29 | ExpressionLimit | All set-ups | x | TRUE | 0 | Uint32 |
| 5-66 Terminal X30/6 Pulse Output Variable | null | All set-ups |  | TRUE | - | Uint8 |
| 5-68 Pulse Output Max Freq \#X30/6 | ExpressionLimit | All set-ups |  | TRUE | 0 | Uint32 |
| 5-7* 24V Encoder Input |  |  |  |  |  |  |
| 5-70 Term 32/33 Pulses per Revolution | 1024 N/A | All set-ups |  | FALSE | 0 | Uint16 |
| 5-71 Term 32/33 Encoder Direction | [0] Clockwise | All set-ups |  | FALSE | - | Uint8 |
| 5-9* Bus Controlled |  |  |  |  |  |  |
| 5-90 Digital \& Relay Bus Control | 0 N/A | All set-ups |  | TRUE | 0 | Uint32 |
| 5-93 Pulse Out \#27 Bus Control | 0.00 \% | All set-ups |  | TRUE | -2 | N2 |
| 5-94 Pulse Out \#27 Timeout Preset | 0.00 \% | 1 set-up |  | TRUE | -2 | Uint16 |
| 5-95 Pulse Out \#29 Bus Control | 0.00 \% | All set-ups | x | TRUE | -2 | N2 |
| 5-96 Pulse Out \#29 Timeout Preset | 0.00 \% | 1 set-up | x | TRUE | -2 | Uint16 |

### 4.3.8. 7-** Controllers

| Par. No. Parameter description $\#$ | Default value | 4-set-up | $\begin{gathered} \text { FC } 302 \\ \text { only } \end{gathered}$ | Change during operation | Conversion index | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7-0* Speed PID Ctrl. |  |  |  |  |  |  |
| 7-00 Speed PID Feedback Source | null | All set-ups |  | FALSE | - | Uint8 |
| 7-02 Speed PID Proportional Gain | ExpressionLimit | All set-ups |  | TRUE | -3 | Uint16 |
| 7-03 Speed PID Integral Time | ExpressionLimit | All set-ups |  | TRUE | -4 | Uint32 |
| 7-04 Speed PID Differentiation Time | ExpressionLimit | All set-ups |  | TRUE | -4 | Uint16 |
| 7-05 Speed PID Diff. Gain Limit | 5.0 N/A | All set-ups |  | TRUE | -1 | Uint16 |
| 7-06 Speed PID Lowpass Filter Time | 10.0 ms | All set-ups |  | TRUE | -4 | Uint16 |
| 7-08 Speed PID Feed Forward Factor | 0 \% | All set-ups |  | FALSE | 0 | Uint16 |
| 7-2* Process Ctrl. Feedb |  |  |  |  |  |  |
| 7-20 Process CL Feedback 1 Resource | [0] No function | All set-ups |  | TRUE | - | Uint8 |
| 7-22 Process CL Feedback 2 Resource | [0] No function | All set-ups |  | TRUE | - | Uint8 |
| 7-3* Process PID Ctrl. |  |  |  |  |  |  |
| 7-30 Process PID Normal/Inverse Control | [0] Normal | All set-ups |  | TRUE | - | Uint8 |
| 7-31 Process PID Anti Windup | [1] On | All set-ups |  | TRUE | - | Uint8 |
| 7-32 Process PID Controller Start Value | 0 RPM | All set-ups |  | TRUE | 67 | Uint16 |
| 7-33 Process PID Proportional Gain | $0.01 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | TRUE | -2 | Uint16 |
| 7-34 Process PID Integral Time | 10000.00 s | All set-ups |  | TRUE | -2 | Uint32 |
| 7-35 Process PID Differentiation Time | 0.00 s | All set-ups |  | TRUE | -2 | Uint16 |
| 7-36 Process PID Differentiation Gain Limit | $5.0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | TRUE | -1 | Uint16 |
| 7-38 Process PID Feed Forward Factor | 0 \% | All set-ups |  | TRUE | 0 | Uint16 |
| 7-39 On Reference Bandwidth | 5 \% | All set-ups |  | TRUE | 0 | Uint8 |


| Par. No. Parameter description \# | Default value | 4-set-up | $\begin{gathered} \text { FC } 302 \\ \text { only } \end{gathered}$ | Change during operation | Conversion index | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8-0* General Settings |  |  |  |  |  |  |
| 8-01 Control Site | [0] Digital and ctrl. word | All set-ups |  | TRUE | - | Uint8 |
| 8-02 Control Word Source | null | All set-ups |  | TRUE | - | Uint8 |
| 8-03 Control Word Timeout Time | 1.0 s | 1 set-up |  | TRUE | -1 | Uint32 |
| 8-04 Control Word Timeout Function | [0] Off | 1 set-up |  | TRUE | - | Uint8 |
| 8-05 End-of-Timeout Function | [1] Resume set-up | 1 set-up |  | TRUE | - | Uint8 |
| 8-06 Reset Control Word Timeout | [0] Do not reset | All set-ups |  | TRUE | - | Uint8 |
| 8-07 Diagnosis Trigger | [0] Disable | 2 set-ups |  | TRUE | - | Uint8 |
| 8-1* Ctrl. Word Settings |  |  |  |  |  |  |
| 8-10 Control Word Profile | [0] FC profile | All set-ups |  | TRUE | - | Uint8 |
| 8-13 Configurable Status Word STW | [1] Profile Default | All set-ups |  | TRUE | - | Uint8 |
| 8-3* FC Port Settings |  |  |  |  |  |  |
| 8-30 Protocol | [0] FC | 1 set-up |  | TRUE | - | Uint8 |
| 8-31 Address | $1 \mathrm{~N} / \mathrm{A}$ | 1 set-up |  | TRUE | 0 | Uint8 |
| 8-32 FC Port Baud Rate | [2] 9600 Baud | 1 set-up |  | TRUE | - | Uint8 |
| 8-35 Minimum Response Delay | 10 ms | All set-ups |  | TRUE | -3 | Uint16 |
| 8-36 Max Response Delay | 5000 ms | 1 set-up |  | TRUE | -3 | Uint16 |
| 8-37 Max Inter-Char Delay | 25 ms | 1 set-up |  | TRUE | -3 | Uint16 |
| 8-4* FC MC protocol set |  |  |  |  |  |  |
| 8-40 Telegram selection | [1] Standard telegram 1 | 2 set-ups |  | TRUE | - | Uint8 |
| 8-5* Digital/Bus |  |  |  |  |  |  |
| 8-50 Coasting Select | [3] Logic OR | All set-ups |  | TRUE | - | Uint8 |
| 8-51 Quick Stop Select | [3] Logic OR | All set-ups |  | TRUE | - | Uint8 |
| 8-52 DC Brake Select | [3] Logic OR | All set-ups |  | TRUE | - | Uint8 |
| 8-53 Start Select | [3] Logic OR | All set-ups |  | TRUE | - | Uint8 |
| 8-54 Reverse Select | [3] Logic OR | All set-ups |  | TRUE | - | Uint8 |
| 8-55 Set-up Select | [3] Logic OR | All set-ups |  | TRUE | - | Uint8 |
| 8-56 Preset Reference Select | [3] Logic OR | All set-ups |  | TRUE | - | Uint8 |
| 8-9* Bus Jog |  |  |  |  |  |  |
| 8-90 Bus Jog 1 Speed | 100 RPM | All set-ups |  | TRUE | 67 | Uint16 |
| 8-91 Bus Jog 2 Speed | 200 RPM | All set-ups |  | TRUE | 67 | Uint16 |

4.3.10. 9-** Profibus

| Par. No. \# | Parameter description | Default value | 4-set-up | $\begin{gathered} \text { FC } 302 \\ \text { only } \end{gathered}$ | Change during operation | Conversion index | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9-00 | Setpoint | 0 N/A | All set-ups |  | TRUE | 0 | Uint16 |
| 9-07 | Actual Value | 0 N/A | All set-ups |  | FALSE | 0 | Uint16 |
| 9-15 | PCD Write Configuration | ExpressionLimit | 2 set-ups |  | TRUE | - | Uint16 |
| 9-16 | PCD Read Configuration | ExpressionLimit | 2 set-ups |  | TRUE | - | Uint16 |
| 9-18 | Node Address | 126 N/A | 1 set-up |  | TRUE | 0 | Uint8 |
| 9-22 | Telegram Selection | [108] PPO 8 | 1 set-up |  | TRUE | - | Uint8 |
| 9-23 | Parameters for Signals | 0 | All set-ups |  | TRUE | - | Uint16 |
| 9-27 | Parameter Edit | [1] Enabled | 2 set-ups |  | FALSE | - | Uint16 |
| 9-28 | Process Control | [1] Enable cyclic master | 2 set-ups |  | FALSE | - | Uint8 |
| 9-31 | Safe Address | $0 \mathrm{~N} / \mathrm{A}$ | 1 set-up |  | TRUE | 0 | Uint16 |
| 9-44 | Fault Message Counter | 0 N/A | All set-ups |  | TRUE | 0 | Uint16 |
| 9-45 | Fault Code | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | TRUE | 0 | Uint16 |
| 9-47 | Fault Number | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | TRUE | 0 | Uint16 |
| 9-52 | Fault Situation Counter | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | TRUE | 0 | Uint16 |
| 9-53 | Profibus Warning Word | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | TRUE | 0 | V2 |
| 9-63 | Actual Baud Rate | [255] No baud rate found | All set-ups |  | TRUE | - | Uint8 |
| 9-64 | Device Identification | 0 N/A | All set-ups |  | TRUE | 0 | Uint16 |
| 9-65 | Profile Number | 0 N/A | All set-ups |  | TRUE | 0 | OctStr[2] |
| 9-67 | Control Word 1 | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | TRUE | 0 | V2 |
| 9-68 | Status Word 1 | 0 N/A | All set-ups |  | TRUE | 0 | V2 |
| 9-71 | Profibus Save Data Values | [0] Off | All set-ups |  | TRUE | - | Uint8 |
| 9-72 | ProfibusDriveReset | [0] No action | 1 set-up |  | FALSE | - | Uint8 |
| 9-80 | Defined Parameters (1) | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | FALSE | 0 | Uint16 |
| 9-81 | Defined Parameters (2) | 0 N/A | All set-ups |  | FALSE | 0 | Uint16 |
| 9-82 | Defined Parameters (3) | 0 N/A | All set-ups |  | FALSE | 0 | Uint16 |
| 9-83 | Defined Parameters (4) | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | FALSE | 0 | Uint16 |
| 9-84 | Defined Parameters (5) | 0 N/A | All set-ups |  | FALSE | 0 | Uint16 |
| 9-90 | Changed Parameters (1) | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | FALSE | 0 | Uint16 |
| 9-91 | Changed Parameters (2) | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | FALSE | 0 | Uint16 |
| 9-92 | Changed Parameters (3) | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | FALSE | 0 | Uint16 |
| 9-93 | Changed Parameters (4) | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | FALSE | 0 | Uint16 |
| 9-94 | Changed parameters (5) | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | FALSE | 0 | Uint16 |
| 9-99 | Profibus Revision Counter | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | TRUE | 0 | Uint16 |


| Par. No. Parameter description \# | Default value | 4-set-up | $\begin{gathered} \text { FC } 302 \\ \text { only } \end{gathered}$ | Change during operation | Conversion index | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10-0* Common Settings |  |  |  |  |  |  |
| 10-00 CAN Protocol | null | 2 set-ups |  | FALSE | - | Uint8 |
| 10-01 Baud Rate Select | null | 2 set-ups |  | TRUE | - | Uint8 |
| 10-02 MAC ID | ExpressionLimit | 2 set-ups |  | TRUE | 0 | Uint8 |
| 10-05 Readout Transmit Error Counter | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | TRUE | 0 | Uint8 |
| 10-06 Readout Receive Error Counter | 0 N/A | All set-ups |  | TRUE | 0 | Uint8 |
| 10-07 Readout Bus Off Counter | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | TRUE | 0 | Uint8 |
| 10-1* DeviceNet |  |  |  |  |  |  |
| 10-10 Process Data Type Selection | null | All set-ups |  | TRUE | - | Uint8 |
| 10-11 Process Data Config Write | ExpressionLimit | 2 set-ups |  | TRUE | - | Uint16 |
| 10-12 Process Data Config Read | ExpressionLimit | 2 set-ups |  | TRUE | - | Uint16 |
| 10-13 Warning Parameter | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | TRUE | 0 | Uint16 |
| 10-14 Net Reference | [0] Off | 2 set-ups |  | TRUE | - | Uint8 |
| 10-15 Net Control | [0] Off | 2 set-ups |  | TRUE | - | Uint8 |
| 10-2* COS Filters |  |  |  |  |  |  |
| 10-20 COS Filter 1 | 0 N/A | All set-ups |  | FALSE | 0 | Uint16 |
| 10-21 COS Filter 2 | 0 N/A | All set-ups |  | FALSE | 0 | Uint16 |
| 10-22 COS Filter 3 | 0 N/A | All set-ups |  | FALSE | 0 | Uint16 |
| 10-23 COS Filter 4 | 0 N/A | All set-ups |  | FALSE | 0 | Uint16 |
| 10-3* Parameter Access |  |  |  |  |  |  |
| 10-30 Array Index | 0 N/A | 2 set-ups |  | TRUE | 0 | Uint8 |
| 10-31 Store Data Values | [0] Off | All set-ups |  | TRUE | - | Uint8 |
| 10-32 Devicenet Revision | ExpressionLimit | All set-ups |  | TRUE | 0 | Uint16 |
| 10-33 Store Always | [0] Off | 1 set-up |  | TRUE | - | Uint8 |
| 10-34 DeviceNet Product Code | ExpressionLimit | 1 set-up |  | TRUE | 0 | Uint16 |
| 10-39 Devicenet F Parameters | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | TRUE | 0 | Uint32 |
| 10-5* CANopen |  |  |  |  |  |  |
| 10-50 Process Data Config Write. | ExpressionLimit | 2 set-ups |  | TRUE | - | Uint16 |
| 10-51 Process Data Config Read. | ExpressionLimit | 2 set-ups |  | TRUE | - | Uint16 |

### 4.3.12. 13-** Smart Logic

| Par. No. Parameter description \# | Default value | 4-set-up | $\begin{gathered} \text { FC } 302 \\ \text { only } \end{gathered}$ | Change during operation | Conversion index | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 13-0* SLC Settings |  |  |  |  |  |  |
| 13-00 SL Controller Mode | null | 2 set-ups |  | TRUE | - | Uint8 |
| 13-01 Start Event | null | 2 set-ups |  | TRUE | - | Uint8 |
| 13-02 Stop Event | null | 2 set-ups |  | TRUE | - | Uint8 |
| 13-03 Reset SLC | [0] Do not reset SLC | All set-ups |  | TRUE | - | Uint8 |
| 13-1* Comparators |  |  |  |  |  |  |
| 13-10 Comparator Operand | null | 2 set-ups |  | TRUE | - | Uint8 |
| 13-11 Comparator Operator | null | 2 set-ups |  | TRUE | - | Uint8 |
| 13-12 Comparator Value | ExpressionLimit | 2 set-ups |  | TRUE | -3 | Int32 |
| 13-2* Timers |  |  |  |  |  |  |
| 13-20 SL Controller Timer | ExpressionLimit | 1 set-up |  | TRUE | -3 | TimD |
| 13-4* Logic Rules |  |  |  |  |  |  |
| 13-40 Logic Rule Boolean 1 | null | 2 set-ups |  | TRUE | - | Uint8 |
| 13-41 Logic Rule Operator 1 | null | 2 set-ups |  | TRUE | - | Uint8 |
| 13-42 Logic Rule Boolean 2 | null | 2 set-ups |  | TRUE | - | Uint8 |
| 13-43 Logic Rule Operator 2 | null | 2 set-ups |  | TRUE | - | Uint8 |
| 13-44 Logic Rule Boolean 3 | null | 2 set-ups |  | TRUE | - | Uint8 |
| 13-5* States |  |  |  |  |  |  |
| 13-51 SL Controller Event | null | 2 set-ups |  | TRUE | - | Uint8 |
| 13-52 SL Controller Action | null | 2 set-ups |  | TRUE | - | Uint8 |

### 4.3.14. 15-** Drive Information

| Par. No. <br> \# | Parameter description | Default value | 4-set-up | $\begin{gathered} \text { FC } 302 \\ \text { only } \end{gathered}$ | Change during operation | Conversion index | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15-0* Operating Data |  |  |  |  |  |  |  |
| 15-00 | Operating Hours | 0 h | All set-ups |  | FALSE | 74 | Uint32 |
| 15-01 | Running Hours | 0 h | All set-ups |  | FALSE | 74 | Uint32 |
| 15-02 | kWh Counter | 0 kWh | All set-ups |  | FALSE | 75 | Uint32 |
| 15-03 | Power-ups | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | FALSE | 0 | Uint32 |
| 15-04 | Over Temps | 0 N/A | All set-ups |  | FALSE | 0 | Uint16 |
| 15-05 | Over Volts | 0 N/A | All set-ups |  | FALSE | 0 | Uint16 |
| 15-06 | Reset kWh Counter | [0] Do not reset | All set-ups |  | TRUE | - | Uint8 |
| 15-07 | Reset Running Hours Counter | [0] Do not reset | All set-ups |  | TRUE | - | Uint8 |
| 15-1* Data Log Settings |  |  |  |  |  |  |  |
| 15-10 | Logging Source | 0 | 2 set-ups |  | TRUE | - | Uint16 |
| 15-11 | Logging Interval | ExpressionLimit | 2 set-ups |  | TRUE | -3 | TimD |
| 15-12 | Trigger Event | [0] FALSE | 1 set-up |  | TRUE | - | Uint8 |
| 15-13 | Logging Mode | [0] Log always | 2 set-ups |  | TRUE | - | Uint8 |
| 15-14 | Samples Before Trigger | $50 \mathrm{~N} / \mathrm{A}$ | 2 set-ups |  | TRUE | 0 | Uint8 |
| 15-2* Historic Log |  |  |  |  |  |  |  |
| 15-20 | Historic Log: Event | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | FALSE | 0 | Uint8 |
| 15-21 | Historic Log: Value | 0 N/A | All set-ups |  | FALSE | 0 | Uint32 |
| 15-22 | Historic Log: Time | 0 ms | All set-ups |  | FALSE | -3 | Uint32 |
| 15-3* Fault Log |  |  |  |  |  |  |  |
| 15-30 | Fault Log: Error Code | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | FALSE | 0 | Uint8 |
| 15-31 | Fault Log: Value | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | FALSE | 0 | Int16 |
| 15-32 | Fault Log: Time | 0 s | All set-ups |  | FALSE | 0 | Uint32 |
| 15-4* Drive Identification |  |  |  |  |  |  |  |
| 15-40 | FC Type | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | FALSE | 0 | VisStr[6] |
| 15-41 | Power Section | 0 N/A | All set-ups |  | FALSE | 0 | VisStr[20] |
| 15-42 | Voltage | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | FALSE | 0 | VisStr[20] |
| 15-43 | Software Version | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | FALSE | 0 | VisStr[5] |
| 15-44 | Ordered Typecode String | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | FALSE | 0 | VisStr[40] |
| 15-45 | Actual Typecode String | 0 N/A | All set-ups |  | FALSE | 0 | VisStr[40] |
| 15-46 | Adj Freq Dr Ordering No. | 0 N/A | All set-ups |  | FALSE | 0 | VisStr[8] |
| 15-47 | Power Card Ordering No. | 0 N/A | All set-ups |  | FALSE | 0 | VisStr[8] |
| 15-48 | LCP ID Num. | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | FALSE | 0 | VisStr[20] |
| 15-49 | SW ID Control Card | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | FALSE | 0 | VisStr[20] |
| 15-50 | SW ID Power Card | 0 N/A | All set-ups |  | FALSE | 0 | VisStr[20] |
| 15-51 | Adj Freq Dr Serial No. | 0 N/A | All set-ups |  | FALSE | 0 | VisStr[10] |
| 15-53 | Power Card Serial Number | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | FALSE | 0 | VisStr[19] |

### 4.3.15. 16-** Data Readouts

| Par. No. Parameter description \# | Default value | 4-set-up | $\begin{gathered} \text { FC } 302 \\ \text { only } \end{gathered}$ | Change during operation | Conversion index | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 16-0* General Status |  |  |  |  |  |  |
| 16-00 Control Word | 0 N/A | All set-ups |  | FALSE | 0 | V2 |
| 16-01 Reference [Unit] | 0.000 ReferenceFeedbackUnit | All set-ups |  | FALSE | -3 | Int32 |
| 16-02 Reference \% | 0.0 \% | All set-ups |  | FALSE | -1 | Int16 |
| 16-03 Status Word | 0 N/A | All set-ups |  | FALSE | 0 | V2 |
| 16-05 Main Actual Value [\%] | 0.00 \% | All set-ups |  | FALSE | -2 | N2 |
| 16-09 Custom Readout | 0.00 CustomReadoutUnit | All set-ups |  | FALSE | -2 | Int32 |
| 16-1* Motor Status |  |  |  |  |  |  |
| 16-10 Power [kW] | 0.00 kW | All set-ups |  | FALSE | 1 | Int32 |
| 16-11 Power [hp] | 0.00 hp | All set-ups |  | FALSE | -2 | Int32 |
| 16-12 Motor voltage | 0.0 V | All set-ups |  | FALSE | -1 | Uint16 |
| 16-13 Frequency | 0.0 Hz | All set-ups |  | FALSE | -1 | Uint16 |
| 16-14 Motor Current | 0.00 A | All set-ups |  | FALSE | -2 | Int32 |
| 16-15 Frequency [\%] | 0.00 \% | All set-ups |  | FALSE | -2 | N2 |
| 16-16 Torque [ Nm ] | 0.0 Nm | All set-ups |  | FALSE | -1 | Int32 |
| 16-17 Speed [RPM] | 0 RPM | All set-ups |  | FALSE | 67 | Int32 |
| 16-18 Motor Thermal | 0 \% | All set-ups |  | FALSE | 0 | Uint8 |
| 16-19 KTY sensor temperature | $0^{\circ} \mathrm{C}$ | All set-ups |  | FALSE | 100 | Int16 |
| 16-20 Motor Angle | 0 N/A | All set-ups |  | TRUE | 0 | Uint16 |
| 16-22 Torque [\%] | 0 \% | All set-ups |  | FALSE | 0 | Int16 |
| 16-3* Drive Status |  |  |  |  |  |  |
| 16-30 DC Link Voltage | 0 V | All set-ups |  | FALSE | 0 | Uint16 |
| 16-32 Brake Energy /s | 0.000 kW | All set-ups |  | FALSE | 0 | Uint32 |
| 16-33 Brake Energy /2 min | 0.000 kW | All set-ups |  | FALSE | 0 | Uint32 |
| 16-34 Heatsink Temp. | $0{ }^{\circ} \mathrm{C}$ | All set-ups |  | FALSE | 100 | Uint8 |
| 16-35 Inverter Thermal | 0 \% | All set-ups |  | FALSE | 0 | Uint8 |
| 16-36 Inv. Nom. Current | ExpressionLimit | All set-ups |  | FALSE | -2 | Uint32 |
| 16-37 Inv. Max. Current | ExpressionLimit | All set-ups |  | FALSE | -2 | Uint32 |
| 16-38 SL Controller State | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | FALSE | 0 | Uint8 |
| 16-39 Control Card Temp. | $0^{\circ} \mathrm{C}$ | All set-ups |  | FALSE | 100 | Uint8 |
| 16-40 Logging Buffer Full | [0] No | All set-ups |  | TRUE | - | Uint8 |
| 16-5* Ref. \& Feedb. |  |  |  |  |  |  |
| 16-50 External Reference | 0.0 N/A | All set-ups |  | FALSE | -1 | Int16 |
| 16-51 Pulse Reference | 0.0 N/A | All set-ups |  | FALSE | -1 | Int16 |
| 16-52 Feedback [Unit] | 0.000 ReferenceFeedbackUnit | All set-ups |  | FALSE | -3 | Int32 |
| 16-53 Digi Pot Reference | $0.00 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | FALSE | -2 | Int16 |

### 4.3.16. 17-** Motor Feedb.Option

| Par. No. Parameter description $\#$ | Default value | 4-set-up | $\begin{gathered} \text { FC } 302 \\ \text { only } \end{gathered}$ | Change during operation | Conversion index | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17-1* Inc. Enc. Interface |  |  |  |  |  |  |
| 17-10 Signal Type | [1] TTL (5V, RS4222) | All set-ups |  | FALSE | - | Uint8 |
| 17-11 Resolution (PPR) | 1024 N/A | All set-ups |  | FALSE | 0 | Uint16 |
| 17-2* Abs. Enc. Interface |  |  |  |  |  |  |
| 17-20 Protocol Selection | [0] None | All set-ups |  | FALSE | - | Uint8 |
| 17-21 Resolution (Positions/Rev) | ExpressionLimit | All set-ups |  | FALSE | 0 | Uint32 |
| 17-24 SSI Data Length | $13 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | FALSE | 0 | Uint8 |
| 17-25 Clock Rate | ExpressionLimit | All set-ups |  | FALSE | 3 | Uint16 |
| 17-26 SSI Data Format | [0] Gray code | All set-ups |  | FALSE | - | Uint8 |
| 17-34 HIPERFACE Baud rate | [4] 9600 | All set-ups |  | FALSE | - | Uint8 |
| 17-5* Resolver Interface |  |  |  |  |  |  |
| 17-50 Poles | $2 \mathrm{~N} / \mathrm{A}$ | 1 set-up |  | FALSE | 0 | Uint8 |
| 17-51 Input Voltage | 7.0 V | 1 set-up |  | FALSE | -1 | Uint8 |
| 17-52 Input Frequency | 10.0 kHz | 1 set-up |  | FALSE | 2 | Uint8 |
| 17-53 Transformation Ratio | 0.5 N/A | 1 set-up |  | FALSE | -1 | Uint8 |
| 17-59 Resolver Interface | [0] Disabled | All set-ups |  | FALSE |  | Uint8 |
| 17-6* Monitoring and App. |  |  |  |  |  |  |
| 17-60 Feedback Direction | [0] Clockwise | All set-ups |  | FALSE | - | Uint8 |
| 17-61 Feedback Signal Monitoring | [1] Warning | All set-ups |  | TRUE | - | Uint8 |


| Par. No. Parameter description $\#$ | Default value | 4-set-up | $\begin{gathered} \text { FC } 302 \\ \text { only } \\ \hline \end{gathered}$ | Change during operation | Conversion index | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32-0* Encoder 2 |  |  |  |  |  |  |
| 32-00 Incremental Signal Type | [1] TTL (5V, RS4222) | 2 set-ups |  | TRUE | - | Uint8 |
| 32-01 Incremental Resolution | 1024 N/A | 2 set-ups |  | TRUE | 0 | Uint32 |
| 32-02 Absolute Protocol | [0] None | 2 set-ups |  | TRUE | - | Uint8 |
| 32-03 Absolute Resolution | 8192 N/A | 2 set-ups |  | TRUE | 0 | Uint32 |
| 32-05 Absolute Encoder Data Length | 25 N/A | 2 set-ups |  | TRUE | 0 | Uint8 |
| 32-06 Absolute Encoder Clock Frequency | 262.000 kHz | 2 set-ups |  | TRUE | 0 | Uint32 |
| 32-07 Absolute Encoder Clock Generation | [1] On | 2 set-ups |  | TRUE | - | Uint8 |
| 32-08 Absolute Encoder Cable Length | 0 m | 2 set-ups |  | TRUE | 0 | Uint16 |
| 32-09 Encoder Monitoring | [0] Off | 2 set-ups |  | TRUE | - | Uint8 |
| 32-10 Rotational Direction | [1] No action | 2 set-ups |  | TRUE | - | Uint8 |
| 32-11 User Unit Denominator | $1 \mathrm{~N} / \mathrm{A}$ | 2 set-ups |  | TRUE | 0 | Uint32 |
| 32-12 User Unit Numerator | 1 N/A | 2 set-ups |  | TRUE | 0 | Uint32 |
| 32-3* Encoder 1 |  |  |  |  |  |  |
| 32-30 Incremental Signal Type | [1] TTL (5V, RS4222) | 2 set-ups |  | TRUE | - | Uint8 |
| 32-31 Incremental Resolution | 1024 N/A | 2 set-ups |  | TRUE | 0 | Uint32 |
| 32-32 Absolute Protocol | [0] None | 2 set-ups |  | TRUE | - | Uint8 |
| 32-33 Absolute Resolution | 8192 N/A | 2 set-ups |  | TRUE | 0 | Uint32 |
| 32-35 Absolute Encoder Data Length | 25 N/A | 2 set-ups |  | TRUE | 0 | Uint8 |
| 32-36 Absolute Encoder Clock Frequency | 262.000 kHz | 2 set-ups |  | TRUE | 0 | Uint32 |
| 32-37 Absolute Encoder Clock Generation | [1] On | 2 set-ups |  | TRUE | - | Uint8 |
| 32-38 Absolute Encoder Cable Length | 0 m | 2 set-ups |  | TRUE | 0 | Uint16 |
| 32-39 Encoder Monitoring | [0] Off | 2 set-ups |  | TRUE | - | Uint8 |
| 32-40 Encoder Termination | [1] On | 2 set-ups |  | TRUE | - | Uint8 |
| 32-5* Feedback Source |  |  |  |  |  |  |
| 32-50 Source Slave | [2] Encoder 2 | 2 set-ups |  | TRUE | - | Uint8 |


| Par. No. <br> \# | Parameter description | Default value | 4-set-up | $\begin{gathered} \text { FC } 302 \\ \text { only } \end{gathered}$ | Change during operation | Conversion index | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32-6* PID Controller |  |  |  |  |  |  |  |
| 32-60 | Proportional factor | 30 N/A | 2 set-ups |  | TRUE | 0 | Uint32 |
| 32-61 | Derivative factor | 0 N/A | 2 set-ups |  | TRUE | 0 | Uint32 |
| 32-62 | Integral factor | 0 N/A | 2 set-ups |  | TRUE | 0 | Uint32 |
| 32-63 | Limit Value for Integral Sum | 1000 N/A | 2 set-ups |  | TRUE | 0 | Uint16 |
| 32-64 | PID Bandwidth | 1000 N/A | 2 set-ups |  | TRUE | 0 | Uint16 |
| 32-65 | Velocity Feed-Forward | $0 \mathrm{~N} / \mathrm{A}$ | 2 set-ups |  | TRUE | 0 | Uint32 |
| 32-66 | Acceleration Feed-Forward | 0 N/A | 2 set-ups |  | TRUE | 0 | Uint32 |
| 32-67 | Max. Tolerated Position Error | 20000 N/A | 2 set-ups |  | TRUE | 0 | Uint32 |
| 32-68 | Reverse Behavior for Slave | [0] Reversing allowed | 2 set-ups |  | TRUE | - | Uint8 |
| 32-69 | Sampling Time for PID Control | 1 ms | 2 set-ups |  | TRUE | -3 | Uint16 |
| 32-70 | Scan Time for Profile Generator | 1 ms | 2 set-ups |  | TRUE | -3 | Uint8 |
| 32-71 | Size of the Control Window (Activation) | 0 N/A | 2 set-ups |  | TRUE | 0 | Uint32 |
| 32-72 | Size of the Control Window (Deactiv.) | $0 \mathrm{~N} / \mathrm{A}$ | 2 set-ups |  | TRUE | 0 | Uint32 |
| 32-8* Velocity \& Accel. |  |  |  |  |  |  |  |
| 32-80 | Maximum Velocity (Encoder) | 1500 RPM | 2 set-ups |  | TRUE | 67 | Uint32 |
| 32-81 | Shortest Ramp | 1.000 s | 2 set-ups |  | TRUE | -3 | Uint32 |
| 32-82 | Ramp Type | [0] Linear | 2 set-ups |  | TRUE | - | Uint8 |
| 32-83 | Velocity Resolution | 100 N/A | 2 set-ups |  | TRUE | 0 | Uint32 |
| 32-84 | Default Velocity | 50 N/A | 2 set-ups |  | TRUE | 0 | Uint32 |
| 32-85 | Default Acceleration | $50 \mathrm{~N} / \mathrm{A}$ | 2 set-ups |  | TRUE | 0 | Uint32 |


| Par. No. <br> \# | Parameter description | Default value | 4-set-up | $\begin{gathered} \text { FC } 302 \\ \text { only } \end{gathered}$ | Change during operation | Conversion index | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 33-0* Home Motion |  |  |  |  |  |  |  |
| 33-00 | Force HOME | [0] Home not forced | 2 set-ups |  | TRUE | - | Uint8 |
| 33-01 | Zero Point Offset from Home Pos. | $0 \mathrm{~N} / \mathrm{A}$ | 2 set-ups |  | TRUE | 0 | Int32 |
| 33-02 | Ramp for Home Motion | 10 N/A | 2 set-ups |  | TRUE | 0 | Uint32 |
| 33-03 | Velocity of Home Motion | 10 N/A | 2 set-ups |  | TRUE | 0 | Int32 |
| 33-04 | Behavior during Home Motion | [0] Reverse and index | 2 set-ups |  | TRUE | - | Uint8 |
| 33-1* Synchronization |  |  |  |  |  |  |  |
| 33-10 | Synchronization Factor Master (M:S) | 1 N/A | 2 set-ups |  | TRUE | 0 | Int32 |
| 33-11 | Synchronization Factor Slave (M:S) | $1 \mathrm{~N} / \mathrm{A}$ | 2 set-ups |  | TRUE | 0 | Int32 |
| 33-12 | Position Offset for Synchronization | $0 \mathrm{~N} / \mathrm{A}$ | 2 set-ups |  | TRUE | 0 | Int32 |
| 33-13 | Accuracy Window for Position Sync. | 1000 N/A | 2 set-ups |  | TRUE | 0 | Int32 |
| 33-14 | Relative Slave Velocity Limit | 0 \% | 2 set-ups |  | TRUE | 0 | Uint8 |
| 33-15 | Marker Number for Master | $1 \mathrm{~N} / \mathrm{A}$ | 2 set-ups |  | TRUE | 0 | Uint16 |
| 33-16 | Marker Number for Slave | $1 \mathrm{~N} / \mathrm{A}$ | 2 set-ups |  | TRUE | 0 | Uint16 |
| 33-17 | Master Marker Distance | 4096 N/A | 2 set-ups |  | TRUE | 0 | Uint32 |
| 33-18 | Slave Marker Distance | 4096 N/A | 2 set-ups |  | TRUE | 0 | Uint32 |
| 33-19 | Master Marker Type | [0] Encoder Z positive | 2 set-ups |  | TRUE | - | Uint8 |
| 33-20 | Slave Marker Type | [0] Encoder Z positive | 2 set-ups |  | TRUE | - | Uint8 |
| 33-21 | Master Marker Tolerance Window | 0 N/A | 2 set-ups |  | TRUE | 0 | Uint32 |
| 33-22 | Slave Marker Tolerance Window | 0 N/A | 2 set-ups |  | TRUE | 0 | Uint32 |
| 33-23 | Start Behavior for Marker Sync | [0] Start Function 1 | 2 set-ups |  | TRUE | - | Uint16 |
| 33-24 | Marker Number for Fault | 10 N/A | 2 set-ups |  | TRUE | 0 | Uint16 |
| 33-25 | Marker Number for Ready | $1 \mathrm{~N} / \mathrm{A}$ | 2 set-ups |  | TRUE | 0 | Uint16 |
| 33-26 | Velocity Filter | 0 us | 2 set-ups |  | TRUE | -6 | Int32 |
| 33-27 | Offset Filter Time | 0 ms | 2 set-ups |  | TRUE | -3 | Uint32 |
| 33-28 | Marker Filter Configuration | [0] Marker filter 1 | 2 set-ups |  | TRUE | - | Uint8 |
| 33-29 | Filter Time for Marker Filter | 0 ms | 2 set-ups |  | TRUE | -3 | Int32 |
| 33-30 | Maximum Marker Correction | 0 N/A | 2 set-ups |  | TRUE | 0 | Uint32 |
| 33-31 | Synchronization Type | [0] Standard | 2 set-ups |  | TRUE | - | Uint8 |
| 33-4* Limit Handling |  |  |  |  |  |  |  |
| 33-40 | Behavior at End Limit Switch | [0] Call error handler | 2 set-ups |  | TRUE | - | Uint8 |
| 33-41 | Negative Software End Limit | -500000 N/A | 2 set-ups |  | TRUE | 0 | Int32 |
| 33-42 | Positive Software End Limit | 500000 N/A | 2 set-ups |  | TRUE | 0 | Int32 |
| 33-43 | Negative Software End Limit Active | [0] Inactive | 2 set-ups |  | TRUE | - | Uint8 |
| 33-44 | Positive Software End Limit Active | [0] Inactive | 2 set-ups |  | TRUE | - | Uint8 |
| 33-45 | Time in Target Window | 0 ms | 2 set-ups |  | TRUE | -3 | Uint8 |
| 33-46 | Target Window LimitValue | 1 N/A | 2 set-ups |  | TRUE | 0 | Uint16 |
| 33-47 | Size of Target Window | 0 N/A | 2 set-ups |  | TRUE | 0 | Uint16 |


| Par. No. <br> \# | Parameter description | Default value | 4-set-up | $\begin{gathered} \text { FC } 302 \\ \text { only } \end{gathered}$ | Change during operation | Conversion index | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 33-5* I/O Configuration |  |  |  |  |  |  |  |
| 33-50 | Terminal X57/1 Digital Input | [0] No function | 2 set-ups |  | TRUE | - | Uint8 |
| 33-51 | Terminal X57/2 Digital Input | [0] No function | 2 set-ups |  | TRUE | - | Uint8 |
| 33-52 | Terminal X57/3 Digital Input | [0] No function | 2 set-ups |  | TRUE | - | Uint8 |
| 33-53 | Terminal X57/4 Digital Input | [0] No function | 2 set-ups |  | TRUE | - | Uint8 |
| 33-54 | Terminal X57/5 Digital Input | [0] No function | 2 set-ups |  | TRUE | - | Uint8 |
| 33-55 | Terminal X57/6 Digital Input | [0] No function | 2 set-ups |  | TRUE | - | Uint8 |
| 33-56 | Terminal X57/7 Digital Input | [0] No function | 2 set-ups |  | TRUE | - | Uint8 |
| 33-57 | Terminal X57/8 Digital Input | [0] No function | 2 set-ups |  | TRUE | - | Uint8 |
| 33-58 | Terminal X57/9 Digital Input | [0] No function | 2 set-ups |  | TRUE | - | Uint8 |
| 33-59 | Terminal X57/10 Digital Input | [0] No function | 2 set-ups |  | TRUE | - | Uint8 |
| 33-60 | Terminal X59/1 and X59/2 Mode | [1] Output | 2 set-ups |  | FALSE | - | Uint8 |
| 33-61 | Terminal X59/1 Digital Input | [0] No function | 2 set-ups |  | TRUE | - | Uint8 |
| 33-62 | Terminal X59/2 Digital Input | [0] No function | 2 set-ups |  | TRUE | - | Uint8 |
| 33-63 | Terminal X59/1 Digital Output | [0] No function | 2 set-ups |  | TRUE | - | Uint8 |
| 33-64 | Terminal X59/2 Digital Output | [0] No function | 2 set-ups |  | TRUE | - | Uint8 |
| 33-65 | Terminal X59/3 Digital Output | [0] No function | 2 set-ups |  | TRUE | - | Uint8 |
| 33-66 | Terminal X59/4 Digital Output | [0] No function | 2 set-ups |  | TRUE | - | Uint8 |
| 33-67 | Terminal X59/5 Digital Output | [0] No function | 2 set-ups |  | TRUE | - | Uint8 |
| 33-68 | Terminal X59/6 Digital Output | [0] No function | 2 set-ups |  | TRUE | - | Uint8 |
| 33-69 | Terminal X59/7 Digital Output | [0] No function | 2 set-ups |  | TRUE | - | Uint8 |
| 33-70 | Terminal X59/8 Digital Output | [0] No function | 2 set-ups |  | TRUE | - | Uint8 |
| 33-8* Global Parameters |  |  |  |  |  |  |  |
| 33-80 | Activated Program Number | -1 N/A | 2 set-ups |  | TRUE | 0 | Int8 |
| 33-81 | Power-up State | [1] Motor ON | 2 set-ups |  | TRUE | - | Uint8 |
| 33-82 | Drive Status Monitoring | [1] On | 2 set-ups |  | TRUE | - | Uint8 |
| 33-83 | Behavior After Error | [0] Coast | 2 set-ups |  | TRUE | - | Uint8 |
| 33-84 | Behavior afterEsc. | [0] Controlled stop | 2 set-ups |  | TRUE | - | Uint8 |
| 33-85 | MCO Supplied by External 24VDC | [0] No | 2 set-ups |  | TRUE | - | Uint8 |


| Par. No. Parameter description $\#$ | Default value | 4-set-up | $\begin{gathered} \text { FC } 302 \\ \text { only } \end{gathered}$ | Change during operation | Conversion index | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 34-0* PCD Write Par. |  |  |  |  |  |  |
| 34-01 PCD 1 Write to MCO | 0 N/A | All set-ups |  | TRUE | 0 | Uint16 |
| 34-02 PCD 2 Write to MCO | 0 N/A | All set-ups |  | TRUE | 0 | Uint16 |
| 34-03 PCD 3 Write to MCO | 0 N/A | All set-ups |  | TRUE | 0 | Uint16 |
| 34-04 PCD 4 Write to MCO | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | TRUE | 0 | Uint16 |
| 34-05 PCD 5 Write to MCO | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | TRUE | 0 | Uint16 |
| 34-06 PCD 6 Write to MCO | 0 N/A | All set-ups |  | TRUE | 0 | Uint16 |
| 34-07 PCD 7 Write to MCO | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | TRUE | 0 | Uint16 |
| 34-08 PCD 8 Write to MCO | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | TRUE | 0 | Uint16 |
| 34-09 PCD 9 Write to MCO | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | TRUE | 0 | Uint16 |
| 34-10 PCD 10 Write to MCO | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | TRUE | 0 | Uint16 |
| 34-2* PCD Read Par. |  |  |  |  |  |  |
| 34-21 PCD 1 Read from MCO | 0 N/A | All set-ups |  | TRUE | 0 | Uint16 |
| 34-22 PCD 2 Read from MCO | 0 N/A | All set-ups |  | TRUE | 0 | Uint16 |
| 34-23 PCD 3 Read from MCO | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | TRUE | 0 | Uint16 |
| 34-24 PCD 4 Read from MCO | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | TRUE | 0 | Uint16 |
| 34-25 PCD 5 Read from MCO | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | TRUE | 0 | Uint16 |
| 34-26 PCD 6 Read from MCO | 0 N/A | All set-ups |  | TRUE | 0 | Uint16 |
| 34-27 PCD 7 Read from MCO | 0 N/A | All set-ups |  | TRUE | 0 | Uint16 |
| 34-28 PCD 8 Read from MCO | 0 N/A | All set-ups |  | TRUE | 0 | Uint16 |
| 34-29 PCD 9 Read from MCO | 0 N/A | All set-ups |  | TRUE | 0 | Uint16 |
| 34-30 PCD 10 Read from MCO | 0 N/A | All set-ups |  | TRUE | 0 | Uint16 |
| 34-4* Inputs \& Outputs |  |  |  |  |  |  |
| 34-40 Digital Inputs | 0 N/A | All set-ups |  | TRUE | 0 | Uint16 |
| 34-41 Digital Outputs | 0 N/A | All set-ups |  | TRUE | 0 | Uint16 |
| 34-5* Process Data |  |  |  |  |  |  |
| 34-50 Actual Position | 0 N/A | All set-ups |  | TRUE | 0 | Int32 |
| 34-51 Commanded Position | 0 N/A | All set-ups |  | TRUE | 0 | Int32 |
| 34-52 Actual Master Position | 0 N/A | All set-ups |  | TRUE | 0 | Int32 |
| 34-53 Slave Index Position | 0 N/A | All set-ups |  | TRUE | 0 | Int32 |
| 34-54 Master Index Position | 0 N/A | All set-ups |  | TRUE | 0 | Int32 |
| 34-55 Curve Position | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | TRUE | 0 | Int32 |
| 34-56 Track Error | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | TRUE | 0 | Int32 |
| 34-57 Synchronizing Error | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | TRUE | 0 | Int32 |
| 34-58 Actual Velocity | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | TRUE | 0 | Int32 |
| 34-59 Actual Master Velocity | 0 N/A | All set-ups |  | TRUE | 0 | Int32 |
| 34-60 Synchronizing Status | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | TRUE | 0 | Int32 |
| 34-61 Axis Status | 0 N/A | All set-ups |  | TRUE | 0 | Int32 |
| 34-62 Program Status | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | TRUE | 0 | Int32 |
| 34-7* Diagnosis readouts |  |  |  |  |  |  |
| 34-70 MCO Alarm Word 1 | $0 \mathrm{~N} / \mathrm{A}$ | All set-ups |  | FALSE | 0 | Uint32 |
| 34-71 MCO Alarm Word 2 | 0 N/A | All set-ups |  | FALSE | 0 | Uint32 |

## 5. General Specifications

Line power supply (L1, L2, L3):

| Supply voltage | 200-240 V $\pm 10 \%$ |
| :---: | :---: |
| Supply voltage FC 301: 380-480 | V / FC 302: $380-500 \mathrm{~V} \pm 10 \%$ |
| Supply voltage | FC 302: $525-690 \mathrm{~V} \pm 10 \%$ |
| Supply frequency | $50 / 60 \mathrm{~Hz}$ |
| Max. imbalance temporary between line phases | $3.0 \%$ of rated supply voltage |
| True Power Factor ( $\lambda$ ) | $\geq 0.9$ nominal at rated load |
| Displacement Power Factor ( $\cos \phi$ ) | near unity ( $>0.98$ ) |
| Switching on input supply L1, L2, L3 (power-ups) $\leq 10 \mathrm{hp}$ [7.5 kW] | maximum twice/min. |
| Switching on input supply L1, L2, L3 (power-ups) $\geq 15 \mathrm{hp}$ [11 kW] | maximum once/min. |
| Environment according to EN60664-1 overvoltage ca | category III/pollution degree 2 |
| The unit is suitable for use on a circuit capable of delivering not metrical Amperes, 240/500/600/ 690 V maximum. | re than 100,000 RMS sym- |

Motor output (U, V, W):

| Output voltage | $0-100 \%$ of supply voltage |
| :--- | ---: |
| Output frequency (0.33-10 hp [0.25-75 kW]) | FC $301: 0.2-1000 \mathrm{~Hz} / \mathrm{FC} 302: 0-1000 \mathrm{~Hz}$ |
| Output frequency (125-750 hp [90-560 kW]) | $0-800 \mathrm{~Hz}$ |
| Output frequency in flux mode (FC 302 only$)$ | $0-300 \mathrm{~Hz}$ |
| Switching on output | Unlimited |
| Ramp times | $0.01-3600 \mathrm{sec}$. |

Torque characteristics:
Starting torque (Constant torque) maximum $160 \%$ for 60 sec.*
Starting torque maximum $180 \%$ up to 0.5 sec .*
Overload torque (Constant torque) maximum $160 \%$ for 60 sec.*
Starting torque (Variable torque) maximum $110 \%$ for 60 sec .*
Overload torque (Variable torque) maximum $110 \%$ for 60 sec .
*Percentage relates to the nominal torque.

| Digital inputs: |  |
| :---: | :---: |
| Programmable digital inputs | FC 301: 4 (5) / FC 302: 4 (6) |
| Terminal number | 18, 19, 27 ${ }^{1)}, 29^{4}$ ), 32, 33 , |
| Logic | PNP or NPN |
| Voltage level | $0-24 \mathrm{~V}$ DC |
| Voltage level, logic'0' PNP | < 5 V DC |
| Voltage level, logic'1' PNP | $>10 \mathrm{VDC}$ |
| Voltage level, logic '0' NPN2) | $>19 \mathrm{VDC}$ |
| Voltage level, logic '1' NPN2) | < 14 V DC |
| Maximum voltage on input | 28 V DC |
| Pulse frequency range | $0-110 \mathrm{kHz}$ |
| (Duty cycle) Min. pulse width | 4.5 ms |
| Input resistance, $\mathrm{R}_{\mathrm{i}}$ | approximately $4 \mathrm{k} \Omega$ |

Safe stop Terminal $37^{3)}$ (Terminal 37 is fixed PNP logic):

| Voltage level | $0-24 \mathrm{~V} \mathrm{DC}$ |
| :--- | :---: |
| Voltage level, logic'0' PNP | $<4 \mathrm{~V}$ DC |
| Voltage level, logic'1' PNP | $>20 \mathrm{~V} \mathrm{DC}$ |
| Nominal input current at 24 V | 50 mA rms |
| Nominal input current at 20 V | 60 mA rms |
| Input capacitance |  |

All digital inputs are galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

1) Terminals 27 and 29 can also be programmed as output.
2) Except safe stop input Terminal 37.
3) Terminal 37 is only available in FC 302 and FC 301 A1 with Safe Stop. It can only be used as safe stop input. Terminal 37 is suitable for category 3 installations in accordance with EN 954-1 (safe stop according to category 0 EN 60204-1), and as required by the EU Machinery Directive 98/37/EC. Terminal 37 and the safe stop function are designed in accordance with EN 60204-1, EN 50178, EN 61800-2, EN 61800-3 and EN 954-1. For correct and safe use of the Safe Stop function, follow the related information and instructions in the Design Guide.
4) FC 302 only.

Analog inputs:

| Number of analog inputs | 2 |
| :---: | :---: |
| Terminal number | 53,54 |
| Modes | Voltage or current |
| Mode select | Switch S201 and switch S202 |
| Voltage mode | Switch S201/switch S202 = OFF (U) |
| Voltage level | FC 301: 0 to $+10 /$ FC 302: -10 to +10 V (scalable) |
| Input resistance, $\mathrm{R}_{\mathrm{i}}$ | approx. $10 \mathrm{k} \Omega$ |
| Max. voltage | $\pm 20 \mathrm{~V}$ |
| Current mode | Switch S201/switch S202 = ON (I) |
| Current level | $0 / 4$ to 20 mA (scalable) |
| Input resistance, $\mathrm{R}_{\mathrm{i}}$ | approx. $200 \Omega$ |
| Max. current | 30 mA |
| Resolution for analog inputs | 10 bit (+ sign) |
| Accuracy of analog inputs | Max. error 0.5\% of full scale |
| Bandwidth | FC 301: $20 \mathrm{~Hz} / \mathrm{FC} 302: 100 \mathrm{~Hz}$ |

The analog inputs are galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.


Pulse/encoder inputs:

| Programmable pulse/encoder inputs | $2 / 1$ |
| :--- | :--- |

Terminal number pulse/encoder
Max. frequency at terminal 29, 32, 33
Max. frequency at terminal 29, 32, 33
291), $33^{2)} / 32^{3)}, 33^{3)}$

Min. frequency at terminal 29, 32, 33
Voltage level
Maximum voltage on input
Input resistance, $\mathrm{R}_{\mathrm{i}}$
Pulse input accuracy ( $0.1-1 \mathrm{kHz}$ )
Encoder input accuracy ( $1-110 \mathrm{kHz}$ )

The pulse and encoder inputs (terminals 29, 32, 33) are galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

1) FC 302 only
2) Pulse inputs are 29 and 33
3) Encoder inputs: $32=A$, and $33=B$

Digital output:

| Programmable digital/pulse outputs | 2 |
| :--- | ---: |
| Terminal number | $27,291)$ |
| Voltage level at digital/frequency output | $0-24 \mathrm{~V}$ |
| Max. output current (sink or source) | 40 mA |
| Max. load at frequency output | $1 \mathrm{k} \Omega$ |
| Max. capacitive load at frequency output | 10 nF |
| Minimum output frequency at frequency output | 0 Hz |
| Maximum output frequency at frequency output | 32 kHz |
| Accuracy of frequency output | Max. error: $0.1 \%$ of full scale |
| Resolution of output frequency | 12 bit |

1) Terminal 27 and 29 can also be programmed as input.

The digital output is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

Analog output:
Number of programmable analog outputs 1
Terminal number 42
Current range at analog output 0/4-20 mA
Max. load GND - analog output $500 \Omega$
Accuracy on analog output
Max. error: $0.5 \%$ of full scale
Resolution on analog output 12 bit
The analog output is ga/vanically isolated from the supply voltage (PELV) and other high-voltage terminals.

Control card, 24 V DC output:
Terminal number 12,13
Output voltage $24 \mathrm{~V}+1,-3 \mathrm{~V}$
Max. load FC 301: $130 \mathrm{~mA} /$ FC 302: 200 mA
The 24 V DC supply is galvanically isolated from the supply voltage (PELV), but has the same potential as the analog and digital inputs and outputs.

Control card, 10 V DC output:
Terminal number 50
Output voltage $\quad 10.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$
Max. load 15 mA
The 10 V DC supply is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

Control card, RS-485 serial communication:
Terminal number 68 (P,TX+, RX+), 69 (N,TX-, RX-)
Terminal number 61
Common for terminals 68 and 69
The RS-485 serial communication circuit is functionally separated from other central circuits and galvanically isolated from the supply voltage (PELV).

Control card, USB serial communication:
USB standard 1.1 (Full speed)
USB plug

Connection to PC is carried out via a standard host/device USB cable.
The USB connection is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.
The USB ground connection is not galvanically isolated from protection ground. Use only an isolated laptop as PC connection to the USB connector on the adjustable frequency drive.

Relay outputs:
Programmable relay outputs
FC $301 \leq 10 \mathrm{hp}[7.5 \mathrm{~kW}]: 1 / \mathrm{FC} 302$ all hp [kW]: 2
Relay 01 Terminal number 1-3 (break), 1-2 (make)
Max. terminal load (AC-1) ${ }^{1}$ ) on 1-3 (NC), 1-2 (NO) (Resistive load) $240 \mathrm{~V} \mathrm{AC}, 2$ A
Max. terminal load (AC-15) ${ }^{1}$ (Inductive load @ $\operatorname{cos\varphi } 0.4$ ) $240 \mathrm{~V} \mathrm{AC}, 0.2$ A
Max. terminal load (DC-1) ${ }^{1}$ ) on 1-2 (NO), 1-3 (NC) (Resistive load) 60 V DC, 1A
Max. terminal load (DC-13) ${ }^{1}$ (Inductive load) $24 \mathrm{~V} \mathrm{DC}$,
Relay 02 (FC 302 only) Terminal number $\quad 4-6$ (break), 4-5 (make)
Max. terminal load (AC-1) ${ }^{1}$ ) on 4-5 (NO) (Resistive load) $400 \mathrm{~V} \mathrm{AC}, 2$ A
Max. terminal load $(\mathrm{AC}-15)^{1}$ ) on 4-5 (NO) (Inductive load @ $\cos \varphi 0.4$ ) $240 \mathrm{~V} \mathrm{AC}, 0.2 \mathrm{~A}$
Max. terminal load (DC-1) ${ }^{1}$ ) on 4-5 (NO) (Resistive load) 80 V DC, 2 A
Max. terminal load (DC-13) ${ }^{1}$ ) on 4-5 (NO) (Inductive load) 24 V DC, 0.1 A
Max. terminal load (AC-1) ${ }^{1}$ on 4-6 (NC) (Resistive load) $240 \mathrm{~V} \mathrm{AC}, 2$ A
Max. terminal load (AC-15) ${ }^{1}$ on 4-6 (NC) (Inductive load @ $\cos \varphi 0.4$ ) 240 V AC, 0.2 A
Max. terminal load (DC-1) ${ }^{1}$ ) on 4-6 (NC) (Resistive load) 50 V DC, 2 A
Max. terminal load (DC-13) ${ }^{1}$ ) on 4-6 (NC) (Inductive load) 24 V DC, 0.1 A
Min. terminal load on 1-3 (NC), 1-2 (NO), 4-6 (NC), 4-5 (NO) 24 V DC $10 \mathrm{~mA}, 24 \mathrm{~V}$ AC 20 mA
Environment according to EN 60664-1 overvoltage category III/pollution degree 2

1) IEC 60947 part 4 and 5

The relay contacts are galvanically isolated from the rest of the circuit by reinforced isolation (PELV).

Cable lengths and cross-sections:

| FC 301: 164 ft. [50 m] / FC 301 (A1-encl.): 82 ft [25 m] / FC |  |
| :---: | :---: |
| Max. motor cable length, shielded | 302: 492 ft [ 150 m ] |
| FC 301: 246 ft. [75 m] / FC 301 (A1-encl.): $82 \mathrm{ft} \mathrm{[25} \mathrm{m]/}$ |  |
| ax. motor cable length, unshielded | FC 302: 984 ft [300 m] |
| Max. cross-section to motor, line power, load sharing and brake, ( $0.33-10 \mathrm{hp}$ [ $0.25 \mathrm{~kW}-7.5 \mathrm{~kW}]$ ) | . 0062 in. ${ }^{2}$ [4 mm²] / 10 AWG |
| Max. cross section to motor, line power, load sharing and brake, (15-20 hp [11-15 kW]) | $0.025 \mathrm{in}^{2}$ [ $\left.16 \mathrm{~mm}^{2}\right] / 6$ AWG |
| Max. cross-section to motor, line power, load sharing and brake, ( $25-30 \mathrm{hp}$ [18.5-22 kW]) | $0.054 \mathrm{in.}^{2}\left[35 \mathrm{~mm}^{2}\right] / 2 \mathrm{AWG}$ |
| Maximum cross-section to control terminals, flexible/rigid wire without cable end sleeves | 0.0023 in. ${ }^{2}$ [1.5 mm²]/16 AWG |
| Maximum cross-section to control terminals, flexible wire with ca ble end sleeves | $0.0016 \mathrm{in}^{2}$ [ $\mathrm{mm}^{2}$ ]/18 AWG |
| Maximum cross-section to control terminals, flexible wire with cable end sleeves with collar | $0.00078 \mathrm{in.}^{2}\left[0.5 \mathrm{~mm}^{2}\right] / 20$ AWG |
| Minimum cross-section to control terminals | 0.0039 in. ${ }^{2}\left[0.25 \mathrm{~mm}^{2}\right] / 24$ AWG |
| or more information, se |  |

Control card performance:
Scan interval FC 301: $5 \mathrm{~ms} / \mathrm{FC} 302: 1 \mathrm{~ms}$
Control characteristics:
Resolution of output frequency at $0-1000 \mathrm{~Hz} \quad+/-0.003 \mathrm{~Hz}$
Repeat accuracy of Precise start/stop (terminals 18, 19) $\leq \pm 0.1 \mathrm{msec}$
System response time (terminals 18, 19, 27, 29, 32, 33) $\leq 2 \mathrm{~ms}$
Speed control range (open-loop)
1:100 of synchronous speed
Speed control range (closed-loop)
1:1000 of synchronous speed
Speed accuracy (open-loop)
30-4000 rpm: error $\pm 8$ rpm
Speed accuracy (closed-loop), depending on resolution of feed-
back device
$0-6000 \mathrm{rpm}$ : error $\pm 0.15 \mathrm{rpm}$
All control characteristics are based on a 4-pole asynchronous motor

- Electronic thermal motor protection against overload.
- Temperature monitoring of the heatsink ensures that the adjustable frequency drive trips if the temperature reaches a predefined level. An overload temperature cannot be reset until the temperature of the heatsink is below the values stated in the tables on the following pages (Guideline - these temperatures may vary for different power sizes, enclosures, etc.).
- The adjustable frequency drive is protected against short-circuits on motor terminals U , V, W.
- If a line phase is missing, the adjustable frequency drive trips or issues a warning (depending on the load).
- Monitoring of the intermediate circuit voltage ensures that the adjustable frequency drive trips if the intermediate circuit voltage is too low or too high.
- The adjustable frequency drive constantly checks for critical levels of internal temperature, load current, high voltage on the intermediate circuit and low motor speeds. As a response to a critical level, the adjustable frequency drive can adjust the switching frequency and/or change the switching pattern in order to ensure the performance of the drive.


## 6. Troubleshooting

### 6.1.1. Warnings/Alarm Messages

A warning or an alarm is signaled by the relevant LED on the front of the adjustable frequency drive, indicated by a code on the display.

A warning remains active until its cause is no longer present. Under certain circumstances, operation of the motor may still be continued. Warning messages may be critical, but are not necessarily so.

In the event of an alarm, the adjustable frequency drive will have tripped. Alarms must be reset to restart operation once their cause has been rectified.

## This may be done in three ways:

1. By using the [RESET] control button on the LCP control panel.
2. Via a digital input with the "Reset" function.
3. Via serial communication/optional serial communication bus.

## NOTE

After a manual reset using the [RESET] button on the LCP, the [AUTO ON] button must be pressed to restart the motor.

If an alarm cannot be reset, the reason may be that its cause has not been rectified, or that the alarm is trip-locked (see also the table on following page).

Alarms that are trip-locked offer additional protection, meaning that the line supply must be switched off before the alarm can be reset. After being switched back on, the adjustable frequency drive is no longer blocked and may be reset as described above, once the cause has been rectified.

Alarms that are not trip-locked can also be reset using the automatic reset function in parameters 14-20 (Warning: automatic wake-up is possible!)

If a warning and alarm are marked against a code in the table on the following page, this means that either a warning occurs before an alarm, or that you can specify whether it is a warning or an alarm that is to be displayed for a given fault.

This is possible, for instance, in parameters 1-90 Motor Thermal Protection. After an alarm or trip, the motor carries on coasting, and the alarm and warning flash. Once the problem has been rectified, only the alarm continues flashing until the adjustable frequency drive is reset.

| No Description | Warning | Alarm/Trip | Alarm/Trip Lock | Parameter Reference |
| :---: | :---: | :---: | :---: | :---: |
| 110 Volts low | X |  |  |  |
| 2 Live zero error | (X) | (X) |  | 6-01 |
| 3 No motor | (X) |  |  | 1-80 |
| 4 Line phase loss | (X) | (X) | (X) | 14-12 |
| 5 DC link voltage high | X |  |  |  |
| 6 DC link voltage low | X |  |  |  |
| 7 DC overvoltage | X | X |  |  |
| 8 DC undervoltage | X | X |  |  |
| 9 Inverter overloaded | X | X |  |  |
| 10 Motor ETR overtemperature | (X) | (X) |  | 1-90 |
| 11 Motor thermistor overtemperature | (X) | (X) |  | 1-90 |
| 12 Torque limit | X | X |  |  |
| 13 Overcurrent | X | X | X |  |
| 14 Ground Fault | X | X | X |  |
| 15 Hardware mismatch |  | X | X |  |
| 16 Short Circuit |  | X | X |  |
| 17 Control word timeout | (X) | (X) |  | 8-04 |
| 23 Internal Fan Fault | X |  |  |  |
| 24 External Fan Fault | X |  |  | 14-53 |
| 25 Brake resistor short-circuited | X |  |  |  |
| 26 Brake resistor power limit | (X) | (X) |  | 2-13 |
| 27 Brake chopper short-circuited | X | X |  |  |
| 28 Brake check | (X) | (X) |  | 2-15 |
| 29 Power board overtemp. | X | X | X |  |
| 30 Motor phase U missing | (X) | (X) | (X) | 4-58 |
| 31 Motor phase V missing | (X) | (X) | (X) | 4-58 |
| 32 Motor phase W missing | (X) | (X) | (X) | 4-58 |
| 33 Soft-charge fault |  | X | X |  |
| 34 Serial communication bus fault | X | X |  |  |
| 36 Line failure | X | X |  |  |
| 38 Internal Fault |  | X | X |  |
| 40 Overload of Digital Output Terminal 27 | (X) |  |  | 5-00, 5-01 |
| 41 Overload of Digital Output Terminal 29 | (X) |  |  | 5-00, 5-02 |
| 42 Overload of Digital Output On X30/6 | (X) |  |  | 5-32 |
| 42 Overload of Digital Output On X30/7 | (X) |  |  | 5-33 |
| 4724 V supply low | X | X | X |  |
| 481.8 V supply low |  | X | X |  |
| 49 Speed limit | X |  |  |  |
| 50 AMA calibration failed |  | X |  |  |
| 51 AMA check Unom and $\mathrm{I}_{\text {nom }}$ |  | X |  |  |
| 52 AMA low Inom |  | X |  |  |
| 53 AMA motor too big |  | X |  |  |
| 54 AMA motor too small |  | X |  |  |
| 55 AMA parameter out of range |  | X |  |  |
| 56 AMA interrupted by user |  | X |  |  |
| 57 AMA timeout |  | X |  |  |
| 58 AMA internal fault | X | X |  |  |
| 59 Current limit | X |  |  |  |

6.1: Alarm/Warning code list

| No. | Description | Warning | Alarm/Trip | Alarm/Trip Lock | Parameter Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 61 | Tracking Error | (X) | (X) |  | 4-30 |
| 62 | Output Frequency at Maximum Limit | X |  |  |  |
| 63 | Mechanical Brake Low |  | (X) |  | 2-20 |
| 64 | Voltage Limit | X |  |  |  |
| 65 | Control Board Overtemperature | X | X | X |  |
| 66 | Heatsink Temperature Low | X |  |  |  |
| 67 | Option Configuration Has Changed |  | X |  |  |
| 68 | Safe Stop | (X) | $(\mathrm{X})^{1)}$ |  | 5-19 |
| 70 | Illegal FC configuration |  |  | X |  |
| 71 | PTC 1 Safe Stop | X | $\mathrm{X}^{1}$ |  | 5-19 |
| 72 | Dangerous Failure |  |  | $\mathrm{X}^{1)}$ | 5-19 |
| 80 | Drive Initialized to Default Value |  | X |  |  |
| 90 | Encoder Loss | (X) | (X) |  | 17-61 |
| 91 | Analog input 54 wrong settings |  |  | X | S202 |
| $\begin{aligned} & 100- \\ & 199 \end{aligned}$ | See Instruction Manual for MCO 305 |  |  |  |  |
| 250 | New spare part |  |  | X | 14-23 |
| 251 | New Type Code |  | X | X |  |

6.2: Alarm/Warning code list
(X) Dependent on parameter

1) Cannot be auto-reset via Par 14-20

A trip is the action taken when an alarm has occurred. The trip will coast the motor and can be reset by pressing the reset button or make a reset by a digital input (Par. 5-1* [1]). The event that causes an alarm cannot damage the drive or result in dangerous conditions. A trip lock is the action taken when an alarm occurs that may cause damage to the drive or
its connected parts. A trip lock situation can only be reset by a power cycling.


| Alarm Word Extended Status Word |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bit | Hex | Dec | Alarm Word | Alarm Word 2 | Warning Word | Warning Word 2 | Extended Status Word |
| 0 | 00000001 | 1 | Brake Check | ServiceTrip, Read/Write | Brake Check |  | Ramping |
| 1 | 00000002 | 2 | Pwr. Card Temp | ServiceTrip, (reserved) | Pwr. Card Temp |  | AMA Running |
| 2 | 00000004 | 4 | Ground Fault | ServiceTrip, Typecode/ Sparepart | Ground Fault |  | Start CW/CCW |
| 3 | 00000008 | 8 | Ctrl.Card Temp | ServiceTrip, (reserved) | Ctrl.Card Temp |  | Slow-down |
| 4 | 00000010 | 16 | Ctrl. Word TO | ServiceTrip, (reserved) | Ctrl. Word TO |  | Catch Up |
| 5 | 00000020 | 32 | Overcurrent |  | Overcurrent |  | Feedback High |
| 6 | 00000040 | 64 | Torque Limit |  | Torque Limit |  | Feedback Low |
| 7 | 00000080 | 128 | Motor Th Over |  | Motor Th Over |  | Output Current High |
| 8 | 00000100 | 256 | Motor ETR Over |  | Motor ETR Over |  | Output Current Low |
| 9 | 00000200 | 512 | Inverter Overld. |  | Inverter Overld. |  | Output Freq High |
| 10 | 00000400 | 1024 | DC Undervolt |  | DC Undervolt |  | Output Freq Low |
| 11 | 00000800 | 2048 | DC Overvolt |  | DC Overvolt |  | Brake Check OK |
| 12 | 00001000 | 4096 | Short Circuit |  | DC Voltage Low |  | Braking Max |
| 13 | 00002000 | 8192 | Soft-charge fault |  | DC Voltage High |  | Braking |
| 14 | 00004000 | 16384 | Line ph. Loss |  | Line ph. Loss |  | Out of Speed Range |
| 15 | 00008000 | 32768 | AMA Not OK |  | No Motor |  | OVC Active |
| 16 | 00010000 | 65536 | Live Zero Error |  | Live Zero Error |  | AC Brake |
| 17 | 00020000 | 131072 | Internal Fault | KTY error | 10 V Low | KTY Warn | Password Timelock |
| 18 | 00040000 | 262144 | Brake Overload | Fans error | Brake Overload | Fans Warn | Password Protection |
| 19 | 00080000 | 524288 | U-phase Loss | ECB error | Brake Resistor | ECB Warn |  |
| 20 | 00100000 | 1048576 | V-phase Loss |  | Brake IGBT |  |  |
| 21 | 00200000 | 2097152 | W-phase Loss |  | Speed Limit |  |  |
| 22 | 00400000 | 4194304 | Ser. com. bus fault |  | Ser. com. bus fault |  | Unused |
| 23 | 00800000 | 8388608 | 24 V Supply Low |  | 24 V Supply Low |  | Unused |
| 24 | 01000000 | 16777216 | Line Failure |  | Line Failure |  | Unused |
| 25 | 02000000 | 33554432 | $\begin{aligned} & 1.8 \mathrm{~V} \text { Supply } \\ & \text { Low } \end{aligned}$ |  | Current Limit |  | Unused |
| 26 | 04000000 | 67108864 | Brake Resistor |  | Low Temp |  | Unused |
| 27 | 08000000 | 134217728 | Brake IGBT |  | Voltage Limit |  | Unused |
| 28 | 10000000 | 268435456 | Option Change |  | Encoder loss |  | Unused |
| 29 | 20000000 | 536870912 | Drive Initialized |  | Output freq. lim. |  | Unused |
| 30 | 40000000 | 1073741824 | Safe Stop (A68) | $\begin{aligned} & \text { PTC } 1 \text { Safe } \\ & \text { Stop (A71) } \end{aligned}$ | Safe Stop (W68) | $\begin{aligned} & \text { PTC } 1 \\ & \text { Safe Stop } \\ & \text { (W71) } \end{aligned}$ | Unused |
| 31 | 80000000 | 2147483648 | Mech. brake low | $\begin{aligned} & \text { Dangerous } \\ & \text { Failure (A72) } \end{aligned}$ | Extended Status Word |  | Unused |

6.3: Description of Alarm Word, Warning Word, and extended Status Word

The alarm words, warning words and extended status words can be read out via the serial communication bus (or optional serial communication bus) for diagnosis. See also par. 16-90-16-94.

## WARNING 1, 10 Volts low:

The 10 V voltage from terminal 50 on the control card is below 10 V .
Remove a portion of the load from terminal 50 , since the 10 V supply is overloaded. Max. 15 mA or minimum $590 \Omega$.

## WARNING/ALARM 2, Live zero error:

The signal on terminal 53 or 54 is less than $50 \%$ of the value set in par. 6-10, 6-12, 6-20 or 6-22, respectively.

## WARNING/ALARM 3, No motor:

No motor has been connected to the output of the adjustable frequency drive.

## WARNING/ALARM 4, Line power phase loss:

A phase is missing on the supply side, or the line voltage imbalance is too high.
This message also appears in case of a fault in the input rectifier on the adjustable frequency drive.

Check the supply voltage and supply currents to the adjustable frequency drive.

## WARNING 5, DC link voltage high:

The intermediate circuit voltage (DC) is higher than the overvoltage limit of the control system. The adjustable frequency drive is still active.

## WARNING 6, DC link voltage low

The intermediate circuit voltage (DC) is below the undervoltage limit of the control system. The adjustable frequency drive is still active.
WARNING/ALARM 7, DC overvoltage:
If the intermediate circuit voltage exceeds the limit, the adjustable frequency drive trips after a given period of time.

## Possible corrections:

Connect a brake resistor
Extend the ramp time
Activate functions in par. 2-10
Increase par. 14-26


## WARNING/ALARM 8, DC undervoltage:

If the intermediate circuit voltage (DC) drops below the "voltage warning low" limit (see table above), the adjustable frequency drive checks if 24 V backup supply is connected. If no 24 V backup supply is connected, the adjustable frequency drive trips after a given period of time, depending on the unit. To check whether the supply voltage matches the adjustable frequency drive, see General Specifications.

## WARNING/ALARM 9, Inverter overloaded:

The adjustable frequency drive is about to cut out because of an overload (too high current for too long). The counter for electronic, thermal inverter protection gives a warning at $98 \%$ and trips at $100 \%$, while giving an alarm. You cannot reset the adjustable frequency drive until the counter is below $90 \%$.
The fault is that the adjustable frequency drive is overloaded by more than $100 \%$ for too long.

## WARNING/ALARM 10, Motor ETR overtemperature:

According to the electronic thermal protection (ETR), the motor is too hot. You can choose if you want the adjustable frequency drive to give a warning or an alarm when the counter reaches $100 \%$ in par. 1-90. The fault is that the motor is overloaded by more than $100 \%$ for too long. Check that the motor par. 1-24 is set correctly.

## WARNING/ALARM 11, Motor thermistor overtemp:

The thermistor or the thermistor connection is disconnected. You can choose if you want the adjustable frequency drive to give a warning or an alarm when the counter reaches $100 \%$ in par. 1-90. Make sure that the thermistor is connected correctly between terminal 53 or 54 (analog voltage input) and terminal 50 (+ 10 V supply), or between terminal 18 or 19 (digital input PNP only) and terminal 50. If aKTY sensoris used, check for correct connection between terminal 54 and 55 .

## WARNING/ALARM 12, Torque limit:

The torque is higher than the value in par. 4-16 (in motor operation), or the torque is higher than the value in par. 4-17 (in regenerative operation).

## WARNING/ALARM 13, Overcurrent:

The inverter peak current limit (approximately $200 \%$ of the rated current) is exceeded. The warning will last approximately $8-12 \mathrm{sec}$., then the adjustable frequency drive trips and issues an alarm. Turn off the adjustable frequency drive and check if the motor shaft can be turned and if the motor size matches the adjustable frequency drive.
If extended mechanical brake control is selected, trip can be reset externally.

## ALARM 14, Ground fault:

There is a discharge from the output phases to ground, either in the cable between the adjustable frequency drive and the motor or in the motor itself.
Turn off the adjustable frequency drive and remove the ground fault.

## ALARM 15, Incomplete hardware:

A fitted option is not handled by the present control board (hardware or software).

## ALARM 16, Short-circuit

There is a short-circuit in the motor or on the motor terminals.
Turn off the adjustable frequency drive and remove the short-circuit.
WARNING/ALARM 17, Control word timeout:
There is no communication to the adjustable frequency drive.
The warning will only be active when par. 8-04 is NOT set to OFF.
If par. 8-04 is set to Stop and Trip, a warning appears and the adjustable frequency drive ramps down until it trips, while giving an alarm.
par. 8-03 Control word Timeout Time could possibly be increased.

## WARNING 23, Internal fan fault:

The fan warning function is an extra protection function that checks if the fan is running/ mounted. The fan warning can be disabled in Fan Monitor, par. 14-53, (set to [0] Disabled).

## WARNING 24, External fan fault:

The fan warning function is an extra protection function that checks if the fan is running/ mounted. The fan warning can be disabled in Fan Monitor, par. 14-53, (set to [0] Disabled).
WARNING 25, Brake resistor shortcircuited:
The brake resistor is monitored during operation. If it short-circuits, the brake function is disconnected and the warning appears. The adjustable frequency drive still works, but without the brake function. Turn off the adjustable frequency drive and replace the brake resistor (see par. 2-15 Brake Check).

## ALARM/WARNING 26, Brake resistor power limit:

The power transmitted to the brake resistor is calculated as a percentage, as a mean value over the last 120 s based on the resistance value of the brake resistor (par. 2-11) and the intermediate circuit voltage. The warning is active when the dissipated braking energy is higher than 90\%. If Trip [2] has been selected in par. 2-13, the adjustable frequency drive cuts out and issues this alarm when the dissipated braking energy is higher than $100 \%$.

ALARM/ WARNING 27, Brake chopper fault:
The brake transistor is monitored during operation, and if it short-circuits, the brake function disconnects and the warning is issued. The adjustable frequency drive is still able to run, but since the brake transistor has shortcircuited, substantial power is transmitted to the brake resistor, even if it is inactive.
Turn off the adjustable frequency drive and remove the brake resistor.
This alarm/warning could also occur if the brake resistor overheats. Terminal 104 to 106 are available as brake resistor. Klixon inputs, see section Brake Resistor Temperature Switch.
Warning: There is a risk of sub-
stantial power being transmit-
ted to the brake resistor if the
brake transistor is short-circuit-
ed.

## ALARM/WARNING 28, Brake check failed:

Brake resistor fault: the brake resistor is not connected/working.

## ALARM 29, Drive overtemperature:

If the enclosure is IP 20 or IP 21 /Type 1 , the cut-out temperature of the heatsink is $203^{\circ} \mathrm{F}$ $+5^{\circ} \mathrm{F}\left[95^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}\right]$. The temperature fault cannot be reset until the temperature of the heatsink is below $158^{\circ} \mathrm{C}+5^{\circ} \mathrm{F}\left[70^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}\right]$.

## The fault could be a result of:

- Ambient temperature too high
- Motor cable too long

ALARM 30, Motor phase U missing:
Motor phase $U$ between the adjustable frequency drive and the motor is missing.

Turn off the adjustable frequency drive and check motor phase U.

## ALARM 31, Motor phase V missing:

Motor phase V between the adjustable frequency drive and the motor is missing.
Turn off the adjustable frequency drive and check motor phase V .

## ALARM 32, Motor phase W missing:

Motor phase W between the adjustable frequency drive and the motor is missing.
Turn off the adjustable frequency drive and check motor phase W.

## ALARM 33, Soft-charge fault:

Too many power-ups have occurred within a short time period. See the chapter General Specifications for the allowed number of pow-er-ups within one minute.

## WARNING/ALARM 34, Serial communication fault:

The serial communication bus on the communication option card is not working.

WARNING/ALARM 36, Line power failure:
This warning/alarm is only active if the supply voltage to the adjustable frequency drive is lost and parameter $14-10$ is NOT set to OFF. Possible correction: check the fuses to the adjustable frequency drive

## ALARM 38, Internal fault:

When this alarm sounds, it may be necessary to contact your Danfoss supplier. Some typical alarm messages:

0 The serial port cannot be initialized. Serious hardware failure
256 The power EEPROM data is defective or too old.
512 The control board EEPROM data is defective or too old.
513 Communication timeout Reading EEPROM data
514 Communication timeout Reading EEPROM data
515 The Application Orientated Control cannot recognize the EEPROM data.

516 Cannot write to the EEPROM because a write command is in progress.
517 The write command has timed out.
518 Failure in the EEPROM
519 Missing or invalid BarCode data in EEPROM 1024-1279 CAN telegram cannot be sent. (1027 indicates a possible hardware failure)
1281 Digital Signal Processor flash timeout
1282 Power micro software version mismatch
1283 Power EEPROM data version mismatch
1284 Cannot read Digital Signal Processor software version
1299 Option SW in slot A is too old.
1300 Option SW in slot B is too old.
1301 Option SW in slot C0 is too old.
1302 Option SW in slot C1 is too old.
1315 Option SW in slot A is not supported (not allowed).
1316 Option SW in slot B is not supported (not allowed).
1317 Option SW in slot C0 is not supported (not allowed).
1318 Option SW in slot C1 is not supported (not allowed).
1536 An exception in the Application Orientated Control is registered. Debug information written in LCP
1792 DSP watchdog is active. Debugging of power part data Motor Orientated Control not transferred correctly
2049 Power data restarted
2315 Missing SW version from power unit
2816 Stack overflow Control board module
2817 Scheduler slow tasks
2818 Fast tasks
2819 Parameter thread
2820 LCP stack overflow
2821 Serial port overflow
2822 USB port overflow

3072- Parameter value is outside its lim-
5122 its. Perform an initialization. Parameter number causing the alarm: Subtract the code from 3072. Ex Error code 3238: 3238-3072 $=166$ is outside the limit
5123 Option in slot A: Hardware incompatible with Control board hardware
5124 Option in slot B: Hardware incompatible with Control board hardware
5125 Option in slot C0: Hardware incompatible with Control board hardware
5126 Option in slot C1: Hardware incompatible with Control board hardware
5376- Out of memory
6231

WARNING 40, Overload of Digital Output Terminal 27
Check the load connected to terminal 27 or remove short-circuit connection. Check parameters 5-00 and 5-01.
WARNING 41, Overload of Digital Output Terminal 29:
Check the load connected to terminal 29 or remove short-circuit connection. Check parameters 5-00 and 5-02.
WARNING 42, Overload of Digital Output On X30/6:
Check the load connected to X30/6 or remove short-circuit connection. Check parameter 5-32.
WARNING 42, Overload of Digital Output On X30/7:
Check the load connected to X30/7 or remove short-circuit connection. Check parameter 5-33.

## WARNING 47, 24 V supply low:

The external 24 V DC backup power supply may be overloaded; otherwise, contact your Danfoss supplier.
WARNING 48, 1.8 V supply low:
Contact your Danfoss supplier.

## WARNING 49, Speed limit:

The speed is not within the range specified in par. 4-11 and par. 4-13.
ALARM 50, AMA calibration failed:
Contact your Danfoss supplier.
ALARM 51, AMA check Unom and Inom: The setting of motor voltage, motor current and motor power is presumably wrong. Check the settings.

## ALARM 52, AMA low Inom:

The motor current is too low. Check the settings.

ALARM 53, AMA motor too big:
The motor is too big for the AMA to be carried out.
ALARM 54, AMA motor too small:
The motor is too big for the AMA to be carried out.
ALARM 55, AMA par. out of range:
The par. values found from the motor are outside the acceptable range.
ALARM 56, AMA interrupted by user:
The AMA has been interrupted by the user.

## ALARM 57, AMA timeout:

Try to start the AMA again a number of times until it is carried out. Please note that repeated runs may heat the motor to a level where the resistances Rs and Rr are increased. In most cases, however, this is not critical.
ALARM 58, AMA internal fault:
Contact your Danfoss supplier.
WARNING 59, Current limit:
The current is higher than the value in par. 4-18.

## WARNING 61, Tracking Error:

An error between the calculated speed and speed measurement from the feedback device. The function Warning/Alarm/Disabling setting is in par 4-30. Accepted error setting in par 4-31 and the allowed time the error occur setting in par 4-32. During a commissioning procedure the function may be effective.
WARNING 62, Output Frequency at Maximum Limit:
The output frequency is higher than the value set in par. 4-19.

## ALARM 63, Mechanical Brake Low:

The actual motor current has not exceeded the "release brake" current within the "Start delay" time window.

## WARNING 64, Voltage Limit:

The load and speed combinations demand a motor voltage higher than the actual DC link voltage.

## WARNING/ALARM/TRIP 65, Control Card Overtemperature:

Control card overtemperature: The cut-out temperature of the control card is $176^{\circ} \mathrm{F}$ [ $80^{\circ}$ C].

WARNING 66, Heatsink Temperature Low:
The heatsink temperature is measured at $32^{\circ}$ $\mathrm{F}\left[0^{\circ} \mathrm{C}\right]$. This may indicate that the temperature sensor is defective, and thus the fan speed is increased to the maximum if the power part or control card is very hot.
ALARM 67, Option Configuration has Changed:
One or more options has either been added or removed since the last power-down.

## ALARM 68, Safe Stop:

Safe Stop has been activated. To resume normal operation, apply 24 V DC to T-37, then send a reset signal (via Bus, Digital I/O, or by pressing [RESET]).

## WARNING 68, Safe Stop:

Safe Stop has been activated. Normal operation is resumed when safe stop is disabled. Warning: Automatic Restart!

## ALARM 70, Illegal FC Configuration:

Current combination of control board and power board is illegal.

## ALARM 71, PTC 1 Safe Stop:

Safe stop has been activated from the MCB 112 PTC thermistor card (motor too warm). Normal operation can be resumed when the MCB 112 applies 24 V DC to $\mathrm{T}-37$ again (when the motor temperature reaches an acceptable level) and when the digital input from the MCB 112 is deactivated. When that happens, a reset signal must be is be sent (via Bus, Digital I/O, or by pressing [RESET]).

## WARNING 71, PTC 1 Safe Stop:

Safe stop has been activated from the MCB 112 PTC thermistor card (motor too warm). Normal operation can be resumed when the MCB 112 applies 24 V DC to T-37 again (when the motor temperature reaches an acceptable level) and when the digital input from the MCB 112 is deactivated. Warning: Automatic Restart.

## ALARM 72, Dangerous Failure:

Safe Stop with Trip Lock. Unexpected signal levels on safe stop and digital input from the MCB 112 PTC thermistor card.

## ALARM 80, Drive Initialized to Default

 Value:Parameter settings are initialized to default setting after a manual (three-finger) reset.

## ALARM 90, Encoder loss:

Check the connection to encoder option and eventually replace the MCB 102 or MCB 103.
ALARM 91, Analog Input 54 Wrong Settings:
Switch S202 has to be set in position OFF (voltage input) when a KTY sensor is connected to analog input terminal 54.
ALARM 250, New Spare Part:
The power or Switch Mode Power Supply has been exchanged. The adjustable frequency drive type code must be restored in the EEPROM. Select the correct type code in Par 14-23 according to the label on unit. Remember to select 'Save to EEPROM' to complete.
ALARM 251, New Type Code:
The adjustable frequency drive has a new type code.
Index2
24 V Dc Backup ..... 4
A
Abbreviations ..... 5
Access To Control Terminals ..... 32
Accessory Bag ..... 15
Alarm Messages ..... 87
Ama ..... 41
Analog Inputs ..... 82
Analog Output ..... 83
Approvals41, 51
B
Brake Control ..... 91
C
Cable Lengths And Cross-sections ..... 84
Cable Lengths And Cross-sections-continued ..... 85
Communication Option ..... 93
Connection To Line Power ..... 22
Control Cables ..... 39
Control Cables ..... 38
Control Card Performance ..... 85
Control Card, +10 V Dc Output ..... 83
Control Card, 24 V Dc Output ..... 83
Control Card, Rs-485 Serial Communication ..... 84
Control Card, Usb Serial Communication ..... 84
Control Characteristics ..... 85
Control Terminals ..... 34
Cooling Conditions ..... 16

## D

Dc Link ..... 91
Decoupling Plate ..... 24
Default Settings ..... 53
Devicenet ..... 4
Digital Inputs: ..... 81
Digital Output ..... 83
Disposal Instructions ..... 7

## $E$

Electrical Installation ..... 34, 38
Electrical Terminals ..... 38
Etr ..... 91
FG
General Warning ..... 9
Graphical Display ..... 45

VLT ${ }^{\circledR}$ AutomationDrive FC 300 Instruction Manual
I
Intermediate Circuit ..... 91
Ip 21/ Type 1 ..... 4
K
Kty Sensor ..... 91
L
Language ..... 48
Language Package 1 ..... 48
Language Package 2 ..... 48
Language Package 3 ..... 48
Language Package 4 ..... 48
Lcp ..... 45
Lcp 101 ..... 46
cp 102 ..... 45
Leakage Current ..... 9
Leds ..... 45, 46
Line Supply ( $11, \mathrm{~L} 2, \mathrm{~L} 3$ ) ..... 81
Local Control Panel ..... 46
M
Main Reactance ..... 51
Maximum Reference ..... 52
Mct 10 ..... 4
Mechanical Brake Control ..... 43
Mechanical Dimensions ..... 19, 20
Mechanical Dimensions ..... 18
Mechanical Mounting ..... 16
Minimum Reference ..... 52
Motor Connection ..... 24
Motor Current ..... 49
Motor Frequency ..... 49
Motor Nameplate ..... 41
Motor Nominal Speed, 1-25 ..... 49
Motor Output ..... 81
Motor Power ..... 49
Motor Protection ..... 86
Motor Thermal Protection ..... 44
Motor Voltage ..... 49
Motor Voltage, 1-22 ..... 49
N
Nameplate Data ..... 41
Non-ul Compliance ..... 28
Numerical Display ..... 46
0
Output Performance ( $u, V, W$ ) ..... 81
P
Parallel Connection Of Motors ..... 44
Potentiometer Reference ..... 37
Profibus ..... 4
Protection ..... 27
Protection And Features ..... 86
Pulse Start/stop ..... 36
Pulse/encoder Inputs ..... 82

## R

Ramp 1 Ramp-down Time ..... 52
Ramp 1 Ramp-up Time ..... 52
Relay Outputs ..... 84
Removal Of Knockouts For Extra Cables ..... 22
Repair Work ..... 9
Residual Current Device ..... 9
S
Safe Stop ..... 9
serial Communication ..... 84
Shaft Performance Levels ..... 3
Shielded/armored ..... 39
Side-by-side Installation ..... 16
Sine-wave Filter ..... 27
Speed Up/slow ..... 37
Start/stop ..... 36
Stator Leakage Reactance ..... 51
Status Messages ..... 45
Switches S201, S202, And S801 ..... 39
Symbols ..... 4
T
Torque Characteristics ..... 81
U
Unintended Start ..... 9
V
Voltage Level ..... 81
Voltage Reference Via A Potentiometer ..... 37
W
Warnings ..... 87

www.danfoss.com/drives

Danfoss shall not be responsible for any errors in catalogs, brochures or other printed material. Danfoss reserves the right to alter its products at any time without notice, provided that alterations to products already on order shall not require material changes in specifications previously agreed upon by Danfoss and the Purchaser. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.

For: Industrial Sales, Application Engineering
Danfoss Drives
Division of Danfoss Inc.
4401 N. Bell School Road
Loves Park, IL. 61111
Toll free: 800/432-6367
Telephone: 815/639-8600
Fax: 815/639-8000
www.namc.danfoss.com

For: HVAC Sales, Water Sales, Engineered Panels
Danfoss Graham and Danfoss US Water
Division of Danfoss Inc.
8800 W. Bradley Road
Milwaukee, WI. 53224
Toll free: 800/621-8806
Telephone: 414/355-8800
Fax: 414/355-6117
www.namc.danfoss.com


[^0]:    Ramp-up Time 1 [s] par. 3-41 Ramp-down Time 1 [s] par. 3-42

